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ENGINEERINGS MODELS

BAR is a body which is thin in two dimensions and has straight initial geometry.
Displacement has only the axial component. Internal force is aligned with the axis.

STRING is a body which is thin in two dimensions and has straight initial geometry.
Displacement has only the transverse component. Internal force is aligned with the tangent
of the mid-curve at the initial and deformed geometries.

THIN SLAB is a body which is thin in one dimension and has planar initial geometry.
Displacement has only the mid-plane components. Internal force does not have transverse
component.

MEMBRANE is a body which is very thin in one dimension and has planar initial
geometry. Displacement has only the transverse component. Internal force is aligned with
the tangent of the mid-plane at the initial and deformed geometries.
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MATHEMATICAL PREREQUISITES

In an analytical solution method, solution trial is used to transform a partial differential
differentia equation into an ordinary differential equation, another solution trial is used to
transform the ordinary differential equation into an algebraic equation etc.

Equation Solution trial

2 2 2

2 2 2( ) 0a a ak m
x y t
     
  

i( )( , , ) ( ) x yx ya x y t A t e  

2 2( ) ( ) ( ) 0x yA t k m A t     i( ) tA t e 

( , , ) ( sin cos )( sin cos )( sin cos )t t x x x x y y y ya x y t t t x x y y              
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5.1 MEMBRANE MODEL

Equation of motion
2 2 2

2 2 2( )w w wS f m
x y t

      
  

( , )x y  0t  ,

Boundary conditions w w    or ( )x y
w wS n n F
x y

   
 

( , )x y  0t  ,

Initial conditions w g   and w h
t





( , )x y  0t  .
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Derivation starting from the first principles goes in the same manner as for the string
model but uses a rectangular material element of side lengths x  and y :
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The tightening xS   and yS   (force per unit length) in the x   and y directions may differ,
in principle. Let us consider the isotropic case x yS S S    . As material elements are
assumed to move only in the transverse direction, equations of motions in the horizontal
directions become

Momentum balance (x)  : ( ) 0SS x y S y
x
      


 0S

x




 ,

Momentum balance (y)  : ( ) 0SS y x S x
y
      


 0S

y




.

Hence, S   (force per unit length) needs to be constant. Using the deformed geometry of
the material element and the assumption that the internal forces are aligned with the
tangent of the mid-plane, gives the representations

x
wF S
x

 


   and y
wF S
y

 

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so the equation of motion in the transverse direction takes the form

2 2 2

2 2 2( )yx FF w w wf S f m
x y x y t

           
    

. 

where m t   is the mass per unit area.

NOTICE: The string and membrane equations as defined in this course do not follow,
e.g., from the principle of virtual work for linear elasticity theory in the same manner as,
e.g., the well-known beam, plate etc. models but requires the use of large-displacement
theory with the kinetic assumption that tightening of the initial flat geometry is constant
and not affected by the transverse displacement.
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FOURIER SERIES

The Fourier series (various forms exist) can be used to represent a function as the sum of
harmonic terms. For example, the sine-transformation pair for a function ( )a x [0, ]x L
with vanishing values at the end points is given by

0
2 sin( ) ( )

L
j

xj a x dx
L L

   {1,2, }j   {1,2, }( ) sin( )jj
xa x j
L

   .

The transformation pair is based on the orthogonality of the modes

0
sin( )sin( )

2
L

jl
x x Lj l dx
L L

     (Kronecker delta).

The transformation (with respect to time) can be used to analyze frequency contents of data,
filtering, to find the combination of the terms of the generic series solution for bar, string
and membrane models satisfying the initial conditions, etc.
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EXAMPLE A rectangular membrane of fixed edges and constant tightening S   (force per
unit length) is loaded by pressures p p   acting on the upper surface and p  acting on the
lower surface. Find the transverse displacement by using the double sine series trial solution
and double sine series representation of the loading.

Answer
2

{1,3,5 } {1,3,5 } 4 2 2
16 1( , ) sin( )sin( )

( )k l
pL x yw x y k l
S L Lkl k l

 
 




 
  

x

y
 L

L
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According to the problem decription, displacement and the constant loading due to
excess pressure on the upper surface, should be presented by double sine series (

, {1,2, }k l  )

( , ) sin( )sin( )kl
x yw x y w k l
L L

   , ( , ) sin( )sin( )kl
x yf x y f k l
L L

   .

As the boundary conditions are satisfied by the trial solution, it is enough to concentrate
on the differential equation. Substituting the typical terms of series representations, gives
a condition for the multipliers of the sine terms:

2 2[( ) ( ) ] 0kl kl
k lw S f
L L
     

2

2 2 2
1

kl kl
Lw f

S k l


 
.

What remains, is finding the coefficients of the double sine representation of the loading.
Using the orthogonality of sines in both coordinate directions



5-11

sin( )sin( )kl
x yp f k l
L L

     2
16 1

klf p
kl

    where , {1,3,5, }k l 

the other coefficients being zeros. Therefore, the series solution takes the form

2

{1,3,5 } {1,3,5 } 4 2 2
16 1( , ) sin( )sin( )

( )k l
pL x yw x y k l
S L Lkl k l

 
 




 
   . 
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EXAMPLE Consider a rectangular drumhead of fixed edges, constant tightening S   (force
per unit length) and density t   (per unit area). Find the frequencies of the free vibrations
by using the double sine series trial solution

( , , ) ( )sin( )sin( )kl
x yw x y t w t k l
L L

   .

Answer 2 2( )
2kl

Sf k l
L t





 

x

y
 L

L
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The solution trial, composed of the sines in both directions, and amplitudes depending
on time is given by , {1,2, }k l  )

( , , ) ( )sin( )sin( )kl
x yw x y t w t k l
L L

   .

As the boundary conditions are satisfied by the trial solution, it is enough to concentrate
on the differential equation. Substitution of the typical term, gives the ordinary
differential equation

2 0kl kl klw w     where 2 22 ( )kl kl
Sf k l

L t
 




   

the corresponding modes being the double sine terms of the trial solution. The smallest
frequency is given by selection 1k l   : 11 / / 2f S t L .
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MODE SUPERPOSITION

If the initial conditions concerning position and displacement of the particles are known
(quite exceptional case in practice), the outcome of the modal analysis ( , ) jA  can be used
to construct a displacement solution for the given initial data starting with the series

(a) 1( , , ) ( , )[ sin( ) cos( )]kl kl kl kl kl
kl

a x y t A x y t t   


   .

The combination of the modes giving ( , )a g x y   and / ( , )a t h x y     at 0t    follow with
the expressions

(b) 2
1 ( , )

Akl kl
kl

A x y hdA


  , 2
1 ( , )

Akl kl
kl

A x y gdA


  , 2A ( , ) ( , )kl kl klA x y A x y dA


  .

The coefficients correspond to the spatial Fourier series of the initial data obtained with the
orthogonal harmonic modes from the modal analysis.
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EXAMPLE Consider a rectangular drumhead of fixed edges, constant tightening S   (force
per unit length) and density t  (per unit area). Find the solution to the transverse
displacement if the initial displacement ( , ) sin( / )sin( / )g x y W k x L l y L   and initial
velocity vanishes. The outcome of the modal analysis is the angular velocity-mode pairs

2 2( )kl
Sk l

L t





    and ( , ) sin( )sin( )kl
x yA x y k l
L L

  .

Answer 2 2( , , ) sin( )sin( )cos( ( ) )x y Sw x y t W k l k l t
L L L t

 



 

x

y
 L

L
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In the same manner as with the string problem, solution as the function of spatial
coordinates and time is obtained by mode superposition with

1( , , ) ( , )[ sin( ) cos( )]kl kl kl kl kl
kl

a x y t A x y t t   


   .

As initial velocity vanishes 0kl  . The initial displacement is one of the modes (some
fixed k  and l , so kl W   the remaining being zeros (no summing now)

2 2( , , ) sin( )sin( )cos( ( ) )x y Sw x y t W k l k l t
L L L t

 



  . 
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5.2 APPROXIMATION TO DERIVATIVES
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TAYLOR’S THEOREM

Taylor series with the remainder term is an important tool in numerics, e.g., in the finite
difference method. Theorem tells how to approximate a function in some neighborhood of
a point by a polynomial.

1D: 1

0

1 1( ) ( ) ( ) [ ( ) ( )]
! ( 1)!

n
i n

i

d df x x x f x x f x
i dx n dx 




     



nD: T T 1

0

1 1( ) ( ) ( ) [ ( ) ( )]
! 1!

n
i n

i
f f f

i n



       

 ξx x x x x x

Theorem assumes existence of the n:th derivative. In the remainder term,   is some point
to the interval and is different in each occurrence). For example, finite difference
approximations to derivatives in terms of values of pointwise values of a function follow
from the theorem.
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The generic form simplifies to

0

1( , ) ( ) ( , ) ( , )
!

n
i

i
f x x y y x y f x y R

i x y
 



 
        

 

when expressions  T x y   x ,  T / /x y       and ( , ) ξ   are used there.
The remainder term is given by

1
( , )

1( , ) [ ( ) ( , )]
1!

nR x y f x y
n x y     

   
  

,

where [ , ]x x x      and [ , ]y y y   .
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DIFFERENCE APPROXIMATIONS

 Derivative Central difference Order

2

( , )2( ) i j
f

x



( 1, ) ( , ) ( 1, )

2
2i j i j i jf f f

x
  


2

2

( , )2( ) i j
f

y



( , 1) ( , ) ( , 1)

2
2i j i j i jf f f

y
  


2

2

( , )( ) i j
f

x y

 

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)
4

i j i j i j i jf f f f
x y

         

 
 2

Although the expressions follow in the same manner as in the one-dimensional case, hand
calculations are a bit tedious with the method based on Taylor series.
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The method using the interpolation of a dataset work also in two-dimensions although
Mathematica may prove to be necessary in manipulations. Let us consider the stencil
{ 1, , 1} { 1, , 1}i i i j j j       of constant spacing x  and y  and interpolation

T( , )p x y  N f  with (9) shape functions ( , ) ( ) ( )x y y x N N N  and function values f
where

( )( ) ( )( ) ( )( )( ) { , , }
( )( ) (0 )(0 ) ( )( )

         
       

      


          
N { , }x y  ,

( 1, 1) ( , 1) ( 1, 1) ( 1, ) ( , ) ( 1, ) ( 1, 1) ( , 1) ( 1, 1){ , , , , , , , , }i j i j i j i j i j i j i j i j i jf f f f f f f f f           f .

Difference approximations follow also from the Taylor’s representation truncated at
certain term and written for { 1, , 1} { 1, , 1}i i i j j j     , adding and subtracting on both
sides, rearranging, and dividing with an appropriate power of x . However, the proper
combination depends on the derivative which makes the Taylor series method a bit
tedious in several physical dimensions.
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DIFFERENCE APPROXIMATIONS

 Derivative Central difference Order

( , )( ) i j
f
x



( 1, ) ( 1, )

2
i j i jf f

x
  


2

( , )( ) i j
f
y



( , 1) ( , 1)
2

i j i jf f
y

  


2

( , )( ) i j
f
x



( , ) ( , 1)i j i jf f
y

 


1

( , )( ) i j
f
y



( , 1) ( , )i j i jf f
y

 


1

In two-dimensions, various stencils can be used in the difference approximation to
derivative at point ( , )i j .
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STENCIL

Stencil is used as a concise way to represent the difference approximations with a geometric
pattern on the grid with the associated multipliers of the function values on the grid. For a
regular grid x y  

2 2

2 2x y
 


 

2

2x




2

2y



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5.3 FINITE DIFFERENCE METHOD

Finite Difference Method is a numerical technique for solving ordinary and partial
differential equations by approximating derivatives with finite difference formulas. On a
regular grid x y h    , the membrane model with zero displacement boundary conditions

Interior ( 1, ) ( , 1) ( , ) ( 1, ) ( , 1) ( , )2 [ 4 ]i j i j i j i j i j i i i j
S w w w w w f m w
h

   


        ( , )i j I

Boundary ( , ) 0i jw  ( , )i j I

Initial conditions ( , ) ( , ) 0i j i jw g     and ( , ) ( , ) 0i j i jw h  ( , )i j I

Where the interior grid point are denoted by I  and the boundary grid points I . Then, the
outcome is a set of Ordinary Differential Equations which can be solved with the matrix and
difference equation methods used for the bar and string models.
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In the finite difference method, derivatives in the continuum model with respect to
spatial coordinates are replaced by difference approximations, to get a set of ordinary
differential equatios or a set of algebraic equations. The aim is replace a problem, which
may be difficult solve as it stands, by a mathematically simpler problem. The prize one
has to pay comes from the discretization error. For a membrane problem of fixed
boundaries, the continuum model is given by

2 2 2

2 2 2( )w w wS f m
x y t

      
  

( , )x y  , 0w  ( , )x y  0t  ,

w g   and w h
t





( , )x y  0t  .

Using the central difference approximation to the two partial derivatives and denoting
the interior grid point by I  and the boundary grid points I , the equation system
transforms to ordinary differential equations.
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EXAMPLE A rectangular membrane of fixed edges and constant tightening s  (force per
unit length) is loaded by pressures p p   acting on the upper surface and p  acting on the
lower surface. Find the solution to the transverse displacement by using the Finite
Difference Method and a regular grid ( , ) {0,1,2} {0,1,2}i j   .

Answer
2 2

(1,1)
1

1
0 625

6
.0pL pLw

S S
 

 
 

   (exact to the model
2

0.0737 pL
S




)

x

y
 L

L
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In the finite difference method, derivatives in the continuum model with respect to
spatial coordinates are replaced by difference approximations, to get a set of algebraic
equations. In the present problem the interior and boundary grid points and the equations
for the grid points are

( 1, ) ( , 1) ( , ) ( 1, ) ( , 1)2 [ 4 ] 0i j i j i j i j i j
S w w w w w p
h

   


       ( , ) {(1,1)}i j I 

( , ) 0i jw  ( , ) {0,1,2} {0,1,2} {(1,1)}\i j I      (interior point excluded)

where / 2x x h L     . Eliminating the displacements of the boundary points from
the equation for the interior point

(1,1)24 [ 4 ] 0S w p
L

    

2

(1,1)
1

16
pLw
S





. 
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EXAMPLE Consider a rectangular drumhead of fixed edges, constant tightening S   (force
per unit length) and density t  (per unit area). Find the frequency of the free vibrations by
using the Finite Difference Method and a regular grid ( , ) {0,1,2} {0,1,2}i j   .

Answer 64 1 14
2

0.S Sf
L t L t  

 
     (exact to the model 10.71 S

L t


 )

x

y
 L

L
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In the finite difference method, derivatives in the continuum model with respect to
spatial coordinates are replaced by difference approximations to get a set of ordinary
differential equations. In the present problem the interior and boundary grid points and
the equations for the grid points are

( 1, ) ( , 1) ( , ) ( 1, ) ( , 1) ( , )2 [ 4 ]i j i j i j i j i j i j
S w w w w w tw
h

   


      ( , ) {(1,1)}i j I 

( , ) 0i jw  ( , ) {0,1,2} {0,1,2} {(1,1)}\i j I      (interior point excluded)

where / 2x x h L     . Eliminating the displacements of the boundary points from
the equation for the interior point

2
(1,1) (1,1) 0w w     where 42 Sf

L t
 




    so 4 1
2

Sf
L t 


  . 
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EXAMPLE Consider a rectangular drumhead of fixed edges, constant tightening S   (force
per unit length) and density t  (per unit area). Find the angular velocities of the free
vibrations and the corresponding modes as predicted by the Finite Difference Method and a
regular grid    ( , ) 0,1,2, , 0,1,2, ,i j n n   . Use the trial solution for the typical mode

( , ) ( ) ( )sin( / )sin( / )i jw t a t k i n l j n  .

Answer 2
1 2 (2 cos cos )kl

S k l
L n nnt

 



  

x

y
 L

L
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The equations for the boundary points are satisfied by the trial solution so it is enough
to consider the ordinary differential equations for the interior points

( 1, ) ( , 1) ( , ) ( 1, ) ( , 1) ( , )2 [ 4 ]i j i j i j i j i j i j
S w w w w w tw
h

   


     

When substituted into the difference expression on the left-hand side, the trial solution

( , ) ( )sin( / )sin( / )i jw a t k i n l j n   and identity sin( ) sin cos cos sin       
give expression

( , )( 1, ) ( , 1) ( , ) ( 1, ) ( , 1) 2(2 cos cos4 ) i ji j i j i j i j i jw w kw w w wl
n n
 

         

So the partial-difference and ordinary-differential equation simplifies to an ordinary-
differential equation
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2
( , )( , ) 0i ji j klw w    where 2

1 2 (2 cos cos )kl
S k l

L n nnt
 




    .

In verification that the solution to the limit problem n   coincides with the exact
solution (a desirable property of a numerical method)

2 2( )kl
S k l

L t



 

one may assume that k ,l  are bounded and use 2cos 1 / 2    when 1  .
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ONE-INDEX NUMBERING
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In practice, a regular two-index numbering is used mainly with rectangular solution
domains. The one index labelling of the grid points in any order works well in
calculations with the matrix representation of the equilibrium equations and equations
of motion as the order of the equations or labelling does not matter (if the number of
algebraic operations needed to find the solution is not considered).
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5.5 TIME INTEGRATION

The one-step DG (Discontinuous Galerkin) and CN (Crank-Nicolson) methods can be
applied to the membrane problem in the same manner as for the bar, and string problems to
find the solution on a grid of the temporal domain.

As the temporal domain for an initial value problem does not have an upper bound (strictly
speaking). Also, the length of the intervals can be chosen to match the behavior of the
solution (small steps for the rapid changes).

0 1 2
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TIME INTEGRATION

 Method Iteration {1,2, }i          Initial 0i 

EX
1

1

cos sin
sin cosi i

a
t

a
a ta

  
  





    
     

        0

a g
ta th

   
       

CN
2

2 2 2
1

4 4

4
1

4 4i i

a
t

a
a at



   

    
     

   


     0

a g
ta th

   
       

DG
2

1

2

4 2 2

6 3 62
12 6 6 3i it

a
t
a

a a
 

   

 


    
     

         0

a g
ta th

   
       

The methods coincide at the limit of vanishing step-size when 0k t
m

    .
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ONE-STEP METHODS FOR EQUATION SYSTEM

DG:

2 2

2 2 1

1
2

1 1
2 6

i i

t t

t tt t 

           
                 

  

K K M a 0 M a
a M 0 aK M M K
 

,
0t t

   
       

a g
a h

CN:
1

1 1
2 2

2 2
i it t t t 

         
               

      

I I I Ia a
a aK M K M
 

,
0t t

   
       

a g
a h

The proper step-size t   depends on the largest eigenvalue of parameter 1 2t M K . The
numerical damping of DG exceeds that of CN whereas the phase error of CN exceeds that
of the DG method.
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EXAMPLE Finite Difference Method using a regular grid ( , ) {0,1,2} {0,1,2}i j    is applied
to discretize the equations for the rectangular drum head shown. Thereafter, Crank-Nicolson
method is applied to find the solution at the temporal grid kt k t  {0,1, }k  . Derive the
iteration formula giving the displacements and velocities of points of the spatial
discretization starting from the known initial displacement and velocities. Membrane
tightening S   and density per unit area t  are constants.

Answer Discussed during the lectures of week 20

x

y
 L

L


