
COE-C3005 Finite Element and Finite difference methods

1.  A rectangular membrane of side length L , density  ,
thickness t , and tightening S  is loaded by a constant
distributed force f  acting on half of the membrane as
shown. If the edges are fixed, find the transverse
displacement by using the continuum model and
double sine series representation of the displacement
and force.
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2. Derive the partial difference equation to the membrane model according to the Finite Difference
Method and a regular grid of different spacings x and y  in the coordinate directions. Consider
a generic interior point ( , )i j . Start with the equation of motion for the continuum model
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where tightening per unit length S ,  distributed force f  , and mass per unit area m  are
constants.
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3.  Derive the partial difference equation to the membrane model according to the Finite Difference
Method and a regular grid of different spacings x and y  in the coordinate directions. Consider
a generic boundary point ( , )i j . Start with the equilibrium equation for the continuum model
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where tightening per unit length S  and transverse external force per unit length F   are constants.
Above, xn  and yn are the components of the unit outward normal to the boundary.
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4.  A rectangular membrane of side length L  and
tightening S  is loaded by a constant distributed force
f  acting on half of the membrane as shown. If the
edges are fixed, find the transverse displacement
using the Finite Difference Method on a regular grid
( , ) {0,1,2,3} {0,1,2,3}i j   .

Answer
2

1

2

11
372

w fL
w S
   

      

5.  A rectangular membrane of side length L , density  ,
thickness t , and tightening S  is loaded by its own
weight as shown. If the edges are fixed, find the
transverse displacements using the Finite Difference
Method on a regular grid ( , ) {0,1,2,3,4} {0,1,2}i j   .
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6.  Consider a rectangular membrane of side length L ,
density  , thickness t , and tightening S . If the edges
are fixed, find angular velocities of the modes, that are
reflection symmetric with respect to the line through the
center point shown using the Finite Difference Method.
Use a regular grid ( , ) {0,1,2,3,4} {0,1,2}i j    of
different spacings in the coordinate directions.

Answer 2 (10 4 2) S
L t





 

x

y L

g

x

 L
y L

f

x

Ly L

L



A rectangular membrane of side length L , density  ,
thickness t , and tightening S  is loaded by a constant
distributed force f  acting on half of the membrane as
shown. If the edges are fixed, find the transverse
displacement by using the continuum model and double
sine series representation of the displacement and force.

Solution
According to the problem, transverse displacement and force are considered to be given by double
sine series
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where  the sums are over the sets {1, 2, }k  , {1,2, }l   and klw , klf  should be determined by
using equilibrium equation and the known distribution of the external force. Both expressions vanish
on the boundaries no matter the multipliers. Let us substitute first into the equilibrium equation
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Combining the results
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Derive the partial difference equation to the membrane model according to the Finite Difference
Method and a regular grid of different spacings x and y  in the coordinate directions. Consider a
generic interior point ( , )i j . Start with the equation of motion for the continuum model
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where tightening per unit length S ,  distributed force f  , and mass per unit area m  are constants.

Solution
In the Finite Difference Method, the derivatives of the differential equation with respect to the spatial
coordinates are replaced by difference approximations. Using the second order accurate central
difference approximations for derivatives with respect to x  and y  at point ( , )i j  and evaluating the
second time derivative at that point:
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Differential equation
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where y h    and /y x    .



Derive the partial difference equation to the membrane model according to the Finite Difference
Method and a regular grid of different spacings x and y  in the coordinate directions. Consider a
generic boundary point ( , )i j . Start with the equilibrium equation for the continuum model
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( , )x y  0t  ,

where tightening per unit length S  and transverse external force per unit length F   are constants.
Above, xn  and yn are the components of the unit outward normal to the boundary.

Solution
In the Finite Difference Method, the derivatives of the differential equation with respect to the spatial
coordinates are replaced by difference approximations. The equation used and the type of difference
approximation depend on the location of the point. The equilibrium equation (in stationary and non-
stationary cases) for boundary point ( , )i j
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depends on the components xn  and yn  of the unit outward normal vector to the domain. Let us
consider a rectangle domain, assume that the edges are aligned with the coordinate axes, omit the
corner points, and use first order accurate approximations at point ( , )i j  for derivatives with respect
to x  and y. Then, 1xn    and 0yn    or 1yn    and 0xn   and the backward and forward
difference approximations to be used depend on xn  and yn :
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For example, when the boundary is defined by 1xn   and 0yn  :
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A rectangular membrane of side length L  and tightening
S  is loaded by a constant distributed force f  acting on
half of the membrane as shown. If the edges are fixed,
find the transverse displacement using the Finite
Difference Method on a regular grid
( , ) {0,1,2,3} {0,1,2,3}i j   .

Solution
The generic equations for the membrane model with fixed boundaries, as given by the Finite
Difference Method on a regular grid, are
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In the present problem, time derivatives vanish, initial conditions are not needed, and solution is
reflection symmetric with respect to lines through the center point and aligned with the coordinate
axes. Therefore, transverse displacements at the grid points satisfy
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As the equations by the Finite Difference Method for points (1,1) , (1, 2)   and (2,1) , (2,2)  do not
differ, it is enough consider (1,1)  and (1, 2)  (say) with the displacement constraints. Here / 3h L :
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A rectangular membrane of side length L , density  ,
thickness t , and tightening S  is loaded by its own weight as
shown. If the edges are fixed, find the transverse
displacements using the Finite Difference Method on a
regular grid ( , ) {0,1,2,3,4} {0,1,2}i j   .

Solution
The difference equations for regular grid but different spacings of the grid points in the coordinate
directions follow from the continuum model boundary value problem when the difference
approximations are substituted there. Equations
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where / 2h y L   , / 2y x     , I  is the index set for the interior points, and I  that for the
boundary points. In the present problem, {(1,1),(2,1), (3,1)}I   and one may use symmetry by
defining

(1,1) (3,1) 1w w w    and (2,1) 2w w .

As the equations given by the (present) Finite Difference Method for the constrained points do not
differ, it is enough to write the equations for ( , ) (1,1)i j   and ( , ) (2,1)i j 
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Consider a rectangular membrane of side length L , density
 , thickness t , and tightening S . If the edges are fixed,
find angular velocities of the modes, that are reflection
symmetric with respect to the line through the center point
shown using the Finite Difference Method. Use a regular
grid ( , ) {0,1,2,3,4} {0,1,2}i j    of different spacings in the
coordinate directions.

Solution
The difference equations for a regular grid but different point spacing in the coordinate directions
follow from the continuum model when the difference approximations are substituted there.
Equations
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give (initial conditions do not matter in modal analysis)
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where / 2h y L   , / 2y x     , I  is the index set for the interior points, and I  that for the
boundary points. In the present problem, {(1,1),(2,1), (3,1)}I   and one may use symmetry by
defining

(1,1) (3,1) 1w w w    and (2,1) 2w w .

As the equations given by the (present) Finite Difference Method for the constrained points do not
differ, it is enough to write the equations for ( , ) (1,1)i j   and ( , ) (2,1)i j   to get
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Solution trial i te w A  gives an algebraic equation system for the mode A  and the corresponding
angular velocity 
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Solution to the possible angular velocities follow from condition
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The corresponding angular velocities follow from the relationship between   and 
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