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Today’s learning outcomes

 Some problems in quantum matter can be
rephrased so that they can be tackled with Al

* Neural-networks can be used as generic
functional approximators



Some paradigmatic examples of

machine learninc

Supervised Unsupervised Reinforcement
learning learning learning
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Classification Clustering & generation Decision making



Unsupervised learning

Generating new faces of humans
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https://thispersondoesnotexist.com/



Unsupervised learning

Generating new faces of humans

https://thispersondoesnotexist.com/

https://thiscatdoesnotexist.com/



Reinforcement learning

Dancing robots  https://www.youtube.com/watch?v=n3KWM1kuAw



Today’s plan

* ML for spontaneous symmetry breaking

* ML for density functional theory
* ML for guantum many-body problems
* Many-body methods for ML



Neural networks



The basics of deep neural networks

Deep neural networks are “general function approximators”

output layer

input layer
hidden layer 1 hidden layer 2

A deep neural network parametrices a function of the form f(f) — g’



The basics of deep neural networks

Neural networks are a family of parametric functions (bias and weights)

input layer hidden layer 1 hidden layer 2 hidden layer 3

&
2, g&\\ output layer

220\ Y “"”fi‘ N

The parameters are optimized to minimize a certain functional

X = LOSS[greal — gpredicted] — LOSS[?jreal — f(freal)]

For example X "~ |?jreal — f(a_freal)‘2



A simple classification problem

How to distinguish between two different
animals with an algorithm?



A simple classification problem
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A simple classification problem

If we represent the image as a matrix, we just need to find the right function
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How do we find the function implementing this operation?



Supervised learning in a nutshell

Take a neural-network

Input the image (NxXN matrix)

Output a 2D vector output layer

input layer
hidden layer 1 hidden layer 2

Take a few examples and minimize X — LOSS[greal — f(freal)]

After the minimization (training), the neural-network will be able to classify new examples



Phase classification



Classical phase transitions

Ordered Disordered
(ferromagnet) (paramagnet)

Critical temperature

Can we use machine learning
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Classical phase transitions

Ordered Disordered

(ferromagnet) (paramagnet) H = J S;S
- — E iS5

s
ki A

Temperature

We can use a “classification algorithm” as did before



Classical phase transitions

Output layer

3.0

The neural-network learns to classify the two phases . \ T /
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Machine learning In
density functional theory



The many-electron problem

The Hamiltonian for electrons in a solid

N N M N N
Ho=—5Y Vi- LNy
2 g g T_]l g g T_]k

7=1 =1 [=1 1=1 k>j

Has an associated electronic density
p('f’) — N/d:gTQ T /dSTN |\Ij(7’j ro, - :T’N)|

How do we compute the density and energy without computing the many-body wavefunction?



Rminder: The Hohenberg-Kohn

theorem

For the ground state of a system, there is a one-to-one relation between
the electronic density and the external electrostatic potential

L0 Ground state electronic density

E[V] L E[p] However, we do not know what is the functional

Can we use neural networks to parametrize the functional?

- Machine learning potentials
- Machine learning exchange correlation functional



Machine learning the potential-
density functional

Potential Potential as Independent Density
Gaussians ML models

The neural network takes as input the potential, and as output the density



Machine learning the exchange-

correlation functional

In the Kohn-Sham equations
Flp] =Tlp| + Jlp| + Exc|p]

The exchange-correlation functional is approximated (LDA, GGA, metaGGA, etc)

Instead of using an approximation, the functional can also be encoded as a neural-network
_ 17NN
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hidden layer 1  hidden layer 2



Neural network guantum
states



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
]

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
]

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?

d = 2F



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
]

A typical wavefunction is written as

‘\Ij> — Z Csi,52,...,51, |317 S2, °~SL>

We need to determine in total 2L coefficients

Is there an efficient way of storing so many coefficients?



Neural-network guantum states

Do not store the coefficient, but find the right function that generates them

681,82,....,8L — f(817 Sy eenny SL)

E

Deep neural network
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The idea is similar as tensor networks, but exploiting a machine-learning architecture



Neural-network guantum states

R ERED o)

How do we find the right neural network for the ground state?
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Neural-network guantum states

R ERED o)

How do we find the right neural network for the ground state?

‘\Ij> — 2681,32 ..... sL‘ShSQa ---3L> 681,82 ...... S, — f(817 Sy eeeny SL)

Optimize the parameters of the network to minimize F =




Advantages of neural-network

guantum-states

* Not bounded by the area-law (suitable for 2D)
* Can potentially harvest all the power of deep learning

* Can outperform any other quantum many-body
method

* Certain architectures are equivalent to tensor-
networks



Machine learning with
guantum-many body
methods



Using a tensor- network

to classi

Tensor-networks allow to parametrice high-dimensional functions
— S1 S2 53
= M M. M;

o oL Csi,s9,....,5L
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘\P>:chl,S2 ,,,,, st |S1, 82, --SL)

Can we use tensor-network architectures “as if” they were neural networks?

Quantum many-body inspired machine learning

FA(x) = gigwﬁ
o in £ 2
d(x




Using a tensor- network




The fashion MNIST dataset
classified with tensor-networks
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Results

95.38% accuracy in training
88.97% accuracy in testing



* Machine learning methods can be used to solve
some problems in quantum matter

* Neural-networks can be used to parametrize
functionals used Iin quantum physics



Reading material

* Machine learning and the physical sciences, Carleo et at,
pages 22-35

* Avery interesting course on ML for scientists in

https://ml-lectures.org/docs/
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