
Machine learning in quantum materials

May 24th 2021

Today's learning outcomes

- Some problems in quantum matter can be rephrased so that they can be tackled with AI
- Neural-networks can be used as generic functional approximators

Some paradigmatic examples of machine learning

Supervised learning

"Dog"

Unsupervised learning

D	U).	2	8	ū	7	1	4	9
1-	8	В	2	7	٤	7	Q	1	3
9	9	7	r	S	5	4	2	2	7
5	g.	6	٤	Q	5	-9	2	P	6
g	4	۵	5	6	6	8	З	9	7
0	9	7	٢	9	٢	9	5	F	2
Ъ	5	З	I	8	Ч	Q.	₽	7	7
8	9	3	J	К	2	5	Ø	5	6
5	Ъ	0	3	4	L	3	3	9	۶
в	5	3	9	8	6	3	в	5	B

Reinforcement learning

Classification

Clustering & generation

Decision making

Unsupervised learning

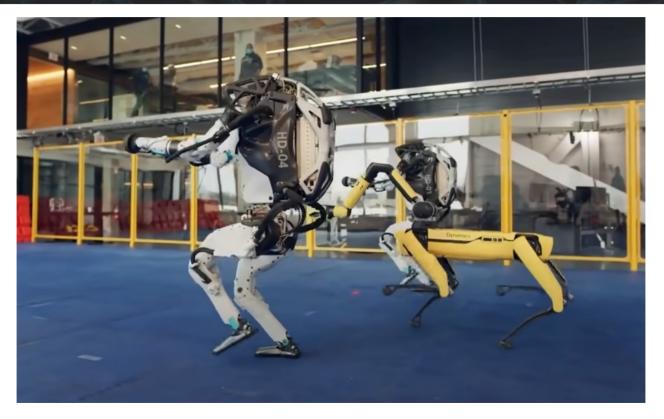
Generating new faces of humans

https://thispersondoesnotexist.com/

Unsupervised learning

Generating new faces of humans

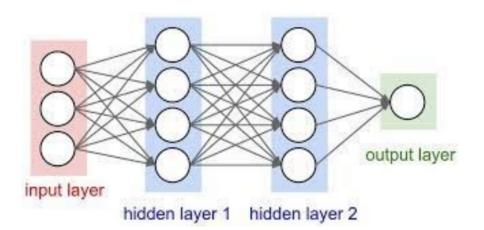
https://thispersondoesnotexist.com/


Generating new faces of cats

https://thiscatdoesnotexist.com/

Reinforcement learning

Dancing robots https://www.youtube.com/watch?v=fn3KWM1kuAw

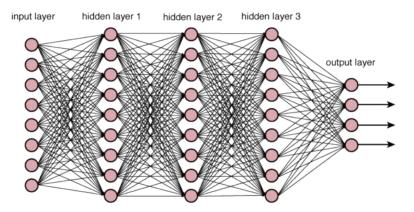

Today's plan

- ML for spontaneous symmetry breaking
- ML for density functional theory
- ML for quantum many-body problems
- Many-body methods for ML

Neural networks

The basics of deep neural networks

Deep neural networks are "general function approximators"



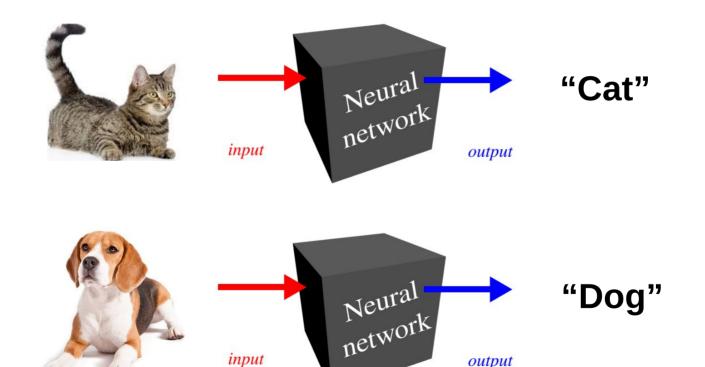
A deep neural network parametrices a function of the form f(

 $f(\vec{x}) = \vec{y}$

The basics of deep neural networks

Neural networks are a family of parametric functions (bias and weights)

The parameters are optimized to minimize a certain functional


$$\chi = \text{LOSS}[\vec{y}_{\text{real}} - \vec{y}_{\text{predicted}}] = \text{LOSS}[\vec{y}_{\text{real}} - f(\vec{x}_{\text{real}})]$$

For example $\chi \sim |\vec{y}_{\text{real}} - f(\vec{x}_{\text{real}})|^2$

A simple classification problem

How to distinguish between two different animals with an algorithm?

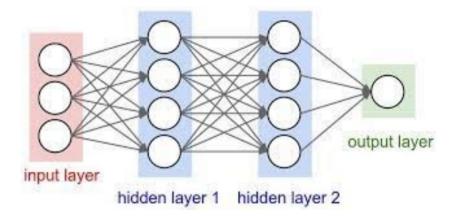
A simple classification problem

A simple classification problem

If we represent the image as a matrix, we just need to find the right function \vec{r}_1

a_{00}	a_{01}	a ₀₂	a_{03}	a_{04}	a_{05}	a_{06}	a_{07}
a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}
a_{20}	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	a_{27}
a_{30}	a_{31}	a_{32}	a_{33}	a_{34}	a35	a_{36}	a_{37}
a_{40}	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	a_{47}
a_{50}	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}	a_{57}
a_{60}	a_{61}	a_{62}	<i>a</i> ₆₃	a64	a_{65}	a_{66}	a_{67}
a_{70}	a_{71}	a ₇₂	a ₇₃	a74	a75	a_{76}	a_{77}
a_{80}	a_{81}	a_{82}	a ₈₃	a ₈₄	a ₈₅	a_{86}	a_{87}
a_{90}	a_{91}	a92	a93	a94	a95	a_{96}	a_{97}
- 30				and the	4106904		-
			Ā	\vec{z}_2	<i>a</i> ₀₅		
ı ₀₀	<i>a</i> ₀₁	a ₀₂	$ar{\jmath}_{_{a_{03}}}$		$a_{05} \\ a_{15}$	a ₀₆	a ₀₇
ι ₀₀ ι ₁₀	$a_{01} \\ a_{11}$	a_{02} a_{12}	$ar{J}^{a_{03}}_{a_{13}}$		a_{15}	a_{06} a_{16}	$a_{07} \\ a_{17}$
i_{00} i_{10} i_{20}	<i>a</i> ₀₁	a ₀₂	$ar{\jmath}_{_{a_{03}}}$			a ₀₆	a ₀₇
i_{00} i_{10} i_{20} i_{30}	$a_{01} \\ a_{11} \\ a_{21}$	$a_{02} \\ a_{12} \\ a_{22}$	$\bar{J}^{a_{03}}_{a_{13}}_{a_{23}}$	2 ^a 04 ^a 14 ^a 24	$a_{15} \\ a_{25}$	$a_{06} \\ a_{16} \\ a_{26}$	a_{07} a_{17} a_{27}
i_{00} i_{10} i_{20} i_{30} i_{40}	$a_{01} \\ a_{11} \\ a_{21} \\ a_{31}$	a_{02} a_{12} a_{22} a_{32}	A a ₀₃ a ₁₃ a ₂₃ a ₃₃	2 2 2 2 2 2 2 2 2 2 2 2 2 2	$a_{15} \\ a_{25} \\ a_{35}$	$a_{06} \\ a_{16} \\ a_{26} \\ a_{36}$	a_{07} a_{17} a_{27} a_{37}
l_{00} l_{10} l_{20} l_{30} l_{40} l_{50}	$egin{array}{c} a_{01} \ a_{11} \ a_{21} \ a_{31} \ a_{41} \end{array}$	$a_{02} \\ a_{12} \\ a_{22} \\ a_{32} \\ a_{42}$	A a ₀₃ a ₁₃ a ₂₃ a ₃₃ a ₄₃	2 a ₀₄ a ₁₄ a ₂₄ a ₃₄ a ₄₄	$a_{15} \\ a_{25} \\ a_{35} \\ a_{45}$	$a_{06} \\ a_{16} \\ a_{26} \\ a_{36} \\ a_{46}$	$a_{07} \\ a_{17} \\ a_{27} \\ a_{37} \\ a_{47}$
$ 1_{00} $ $ 1_{10} $ $ 1_{20} $ $ 1_{30} $ $ 1_{40} $ $ 1_{50} $ $ 1_{60} $	$egin{array}{c} a_{01} \\ a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \\ a_{51} \end{array}$	a_{02} a_{12} a_{22} a_{32} a_{42} a_{52}	A a ₀₃ a ₁₃ a ₂₃ a ₃₃ a ₄₃ a ₅₃	2 a ₀₄ a ₁₄ a ₂₄ a ₃₄ a ₄₄ a ₅₄	$a_{15} \\ a_{25} \\ a_{35} \\ a_{45} \\ a_{55}$	$a_{06} \\ a_{16} \\ a_{26} \\ a_{36} \\ a_{46} \\ a_{56}$	a_{07} a_{17} a_{27} a_{37} a_{47} a_{57}
$ 1_{00} $ $ 1_{10} $ $ 1_{20} $ $ 1_{30} $ $ 1_{40} $ $ 1_{50} $	$egin{array}{c} a_{01} \\ a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \\ a_{51} \\ a_{61} \end{array}$	$a_{02} \\ a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \\ a_{52} \\ a_{62}$	A a ₀₃ a ₁₃ a ₂₃ a ₃₃ a ₄₃ a ₅₃ a ₆₃	2 a ₀₄ a ₁₄ a ₂₄ a ₃₄ a ₄₄ a ₅₄ a ₆₄	a_{15} a_{25} a_{35} a_{45} a_{55} a_{65}	$a_{06} \\ a_{16} \\ a_{26} \\ a_{36} \\ a_{46} \\ a_{56} \\ a_{66}$	$a_{07} \\ a_{17} \\ a_{27} \\ a_{37} \\ a_{47} \\ a_{57} \\ a_{67}$

$$f(\vec{x}_1) = \vec{y}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 "Cat"

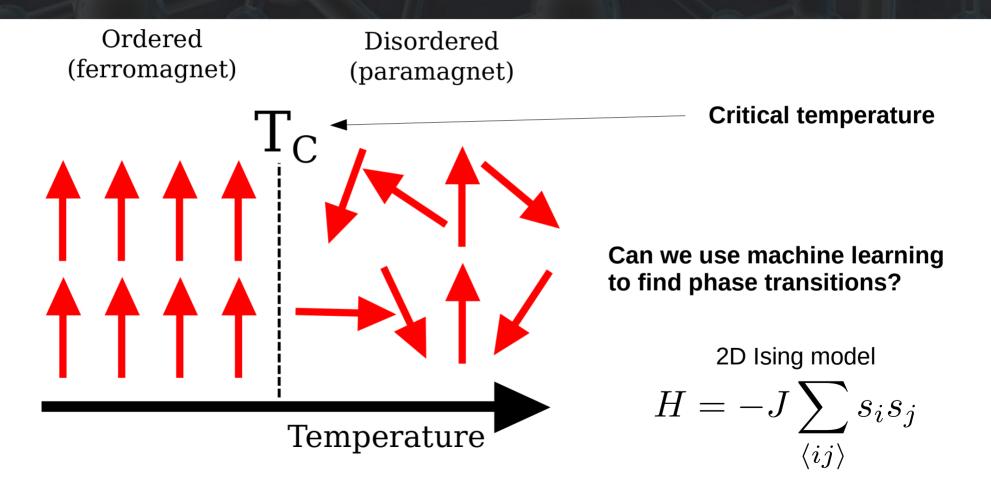

$$f(\vec{x}_2) = \vec{y}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \text{``Dog"}$$

How do we find the function implementing this operation?

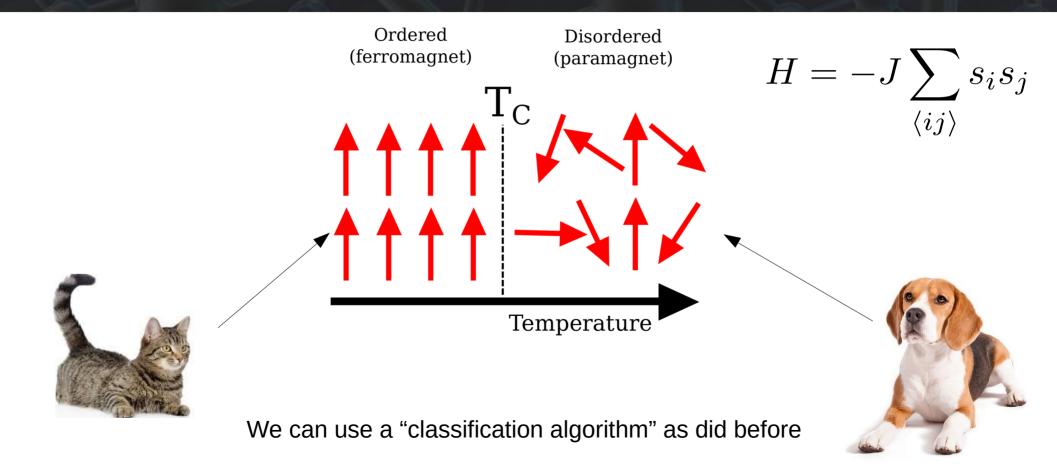
Supervised learning in a nutshell

Take a neural-network

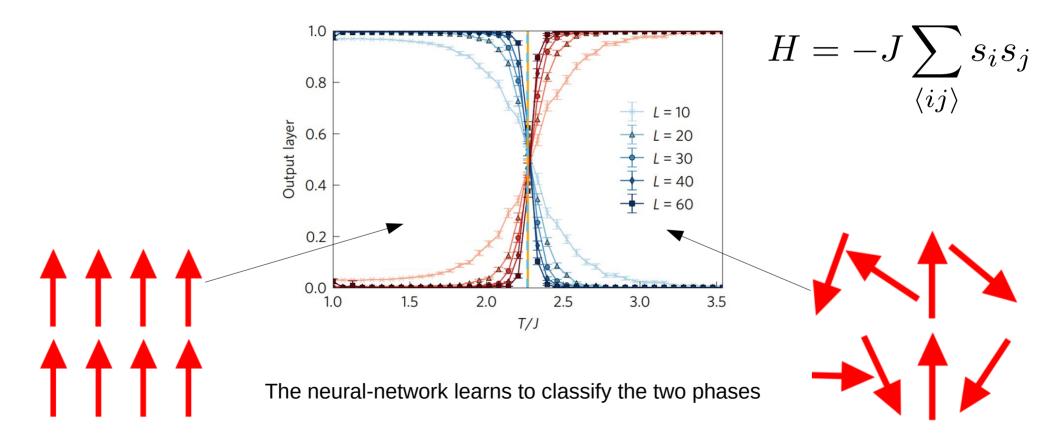
Input the image (NxN matrix) Output a 2D vector



Take a few examples and minimize $\chi = \text{LOSS}[\vec{y}_{\text{real}} - f(\vec{x}_{\text{real}})]$


After the minimization (training), the neural-network will be able to classify new examples

Phase classification


Classical phase transitions

Classical phase transitions

Classical phase transitions

Machine learning in density functional theory

The many-electron problem

The Hamiltonian for electrons in a solid

$$H_{\rm el} = -\frac{1}{2} \sum_{j=1}^{N} \nabla_j^2 - \sum_{j=1}^{N} \sum_{l=1}^{M} \frac{Z_l}{\tilde{r}_{jl}} + \sum_{j=1}^{N} \sum_{k>j}^{N} \frac{1}{r_{jk}},$$

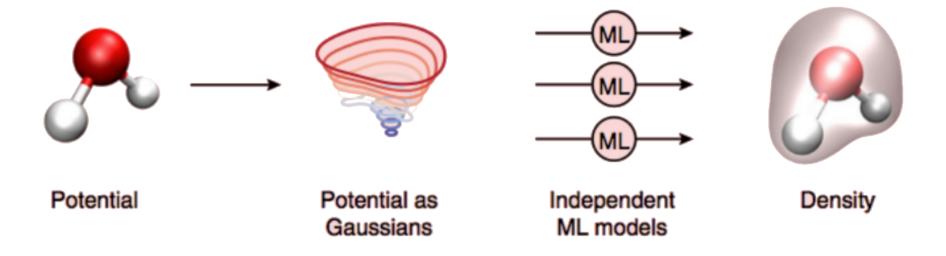
Has an associated electronic density

$$\rho(\mathbf{r}) = N \int d^3 \mathbf{r}_2 \cdots \int d^3 \mathbf{r}_N |\Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

How do we compute the density and energy without computing the many-body wavefunction?

Rminder: The Hohenberg-Kohn theorem

For the ground state of a system, there is a one-to-one relation between the electronic density and the external electrostatic potential


$$H = T + V \qquad \qquad V \leftrightarrow |\Psi\rangle \leftrightarrow \rho_0$$

 $\rho_0 \qquad \text{Ground state electronic density} \\ E[V] \leftrightarrow E[\rho] \quad \text{However, we do not know what is the functional}$

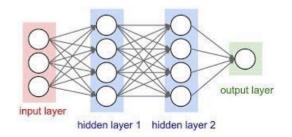
Can we use neural networks to parametrize the functional?

- Machine learning potentials
- Machine learning exchange correlation functional

Machine learning the potentialdensity functional

The neural network takes as input the potential, and as output the density

Machine learning the exchangecorrelation functional


In the Kohn-Sham equations

$$F[\rho] = T[\rho] + J[\rho] + E_{XC}[\rho]$$

The exchange-correlation functional is approximated (LDA, GGA, metaGGA, etc)

Instead of using an approximation, the functional can also be encoded as a neural-network


$$E_{XC} \equiv E_{XC}^{NN}$$
$$\frac{\delta E_{XC}}{\delta \rho} = V_{XC} \equiv V_{XC}^{NN}$$

Neural network quantum states

The quantum many-body problem

Let us go back to a simple many-body problem



And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?

The quantum many-body problem

Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?

$$d = 2^L$$

The quantum many-body problem

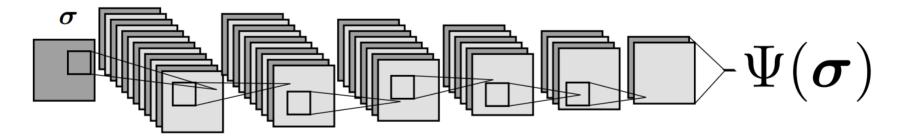
Let us go back to a simple many-body problem

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

A typical wavefunction is written as

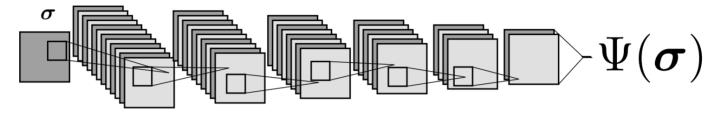
$$|\Psi\rangle = \sum c_{s_1,s_2,\ldots,s_L} |s_1,s_2,\ldots,s_L\rangle$$

We need to determine in total 2^L coefficients


Is there an efficient way of storing so many coefficients?

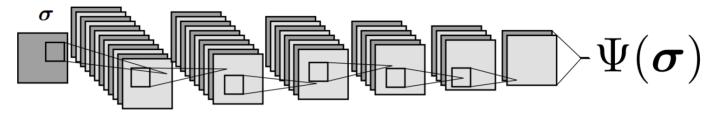
Neural-network quantum states

Do not store the coefficient, but find the right function that generates them


$$c_{s_1,s_2,...,s_L} = f(s_1, s_2, ..., s_L)$$

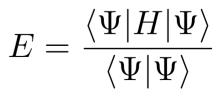
Deep neural network

The idea is similar as tensor networks, but exploiting a machine-learning architecture


Neural-network quantum states

How do we find the right neural network for the ground state?

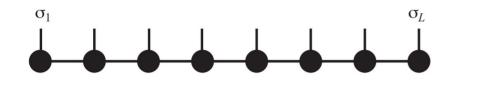
 $|\Psi\rangle = \sum c_{s_1, s_2, \dots, s_L} |s_1, s_2, \dots, s_L\rangle \qquad c_{s_1, s_2, \dots, s_L} = f(s_1, s_2, \dots, s_L)$


Neural-network quantum states

How do we find the right neural network for the ground state?

$$|\Psi\rangle = \sum c_{s_1, s_2, \dots, s_L} |s_1, s_2, \dots, s_L\rangle \qquad c_{s_1, s_2, \dots, s_L} = f(s_1, s_2, \dots, s_L)$$

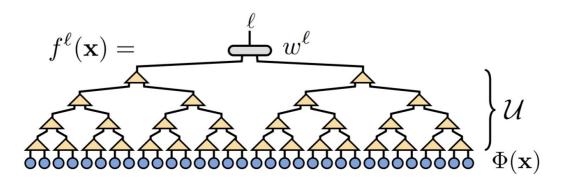
Optimize the parameters of the network to minimize

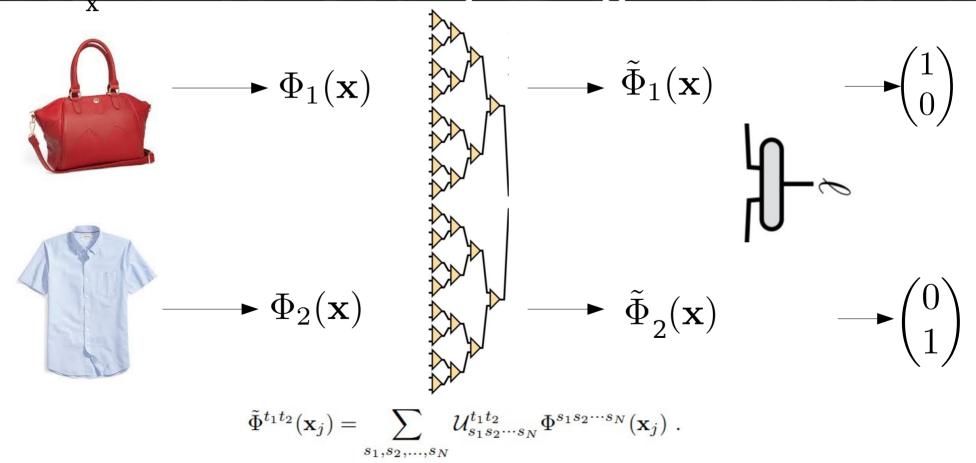

Advantages of neural-network quantum-states

- Not bounded by the area-law (suitable for 2D)
- Can potentially harvest all the power of deep learning
- Can outperform any other quantum many-body method
- Certain architectures are equivalent to tensornetworks

Machine learning with quantum-many body methods

Using a tensor-network to classify images


Tensor-networks allow to parametrice high-dimensional functions


$$c_{s_1,s_2,...,s_L} = M_1^{s_1} M_2^{s_2} ... M_L^{s_3}$$
$$|\Psi\rangle = \sum c_{s_1,s_2,...,s_L} |s_1,s_2,...s_L\rangle$$

Can we use tensor-network architectures "as if" they were neural networks?

Quantum many-body inspired machine learning

Using a tensor-network to classify images

The fashion MNIST dataset classified with tensor-networks

Results

95.38% accuracy in training88.97% accuracy in testing

Take home

- Machine learning methods can be used to solve some problems in quantum matter
- Neural-networks can be used to parametrize functionals used in quantum physics

Reading material

- Machine learning and the physical sciences, Carleo et at, pages 22-35
- A very interesting course on ML for scientists in

https://ml-lectures.org/docs/