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MEMBRANE EQUATIONS
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EXAMPLE A circular membrane of radius R, fixed edges, and constant tightening S’
(force per unit length) is loaded by pressure p+ Ap acting on the upper surface and p acting
on the lower surface. Find the transverse displacement assuming that the solution is rotation
symmetric.
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According to the problem description, solution is rotational symmetric so it can depend
only on the distance from the centerpoint r :\/x2 + y2 . Then, membrane equilibrium
equation simplifies to the ordinary differential equation (see: Laplace operator in polar
coordinate system)

1d Apl o

S ——(r—)+Ap=0 < wlr)=——=r“+alnr+b.
rdr( r) b= (r) S" 4

Solution should be bounded at the origin so a=0. The value of the second parameter
follows from the boundary condition w(R) =0. Therefore

w(r)=2P 1

4(R 2_r?) .
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VIBRATION PATTERNS OF DRUMHEAD

14.6827

14.6827

5.78323

30.4787

26.3791

26.3784
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work for particle and continuum models is just a concise representations
of equations-of-motion and boundary conditions of the models.

Virtual work String Membrane
Sy int _j S(a5wa_w)dx _I S,(a5w 8W+ OOW aw)dA
Q OX OX Q OX OX oy oy
ext '
SW jQ (Swf )dx jQ (swf")dA
SW e swpal g swipt S da
—jQ (owp F) X —jQ (dwp F)
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6.1 INTERPOLANT AND APPROXIMATION
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In Finite Element Method, grid points and triangles, having the grid points as the
vertices, are called as the nodes and elements, respectively. The representation of
geometry or dataset uses a list of triangle vertex labels and separate lists of coordinates
and function values. The regular grid representations used in Particle Surrogate Method
and Finite Difference Method are particular cases of the more generic representation.

Piecewise linear interpolant p(x, y) to the dataset{...,(X;, y; f;)....} (one-index labeling)
uses a triangle representation having the grid points as vertices. Regular triangle
representation on a regular grid of the dataset repeats the same triangle element pattern
for all interior points. Assuming that the dataset is sampling of function f (X, y) at the
grid points, p(X,y) can also be considered as an approximation to f(Xx,y). Piecewise
linear interpolation with the triangle division works also without a regular grid.
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SHAPE FUNCTIONS

Piecewise linear interpolants to datasets {...,(x;,¥; fi),...}, where f; is chosen to be one at
one of the grid points the remaining being zeros, are called as the piecewise linear shape
functions N;(X,y):

X &y v I A
Ly~ Ay o 8
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With the shape function concept, the linear interpolant to dataset {...,(X, Vi, fj),.. .}
(X, Y;, fi) can be represented in the same form as in the one-dimensional case

p(x,y) =2, fiNi(x,y)

in which f; el are the nodal values and | is the labelling set. In a typical triangle
element of the vertex nodes (i, j,k), only the shape functions of nodes i, |, and k are
non-zeros. The expression of the shape functions and the interpolant are

N(xY)| |1
TN Y) =] X
Nk(y)) Y

respectively.

1
Xk

Yk

-1

> and  p(X,y) =1
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6.2 WEIGHTED RESIDUAL APPROXIMATION

Finding an approximation g(x,y) to function f(x,y) is one the basic tasks in numerical
mathematics. In the Least Squares Method and Weighted Residual Methods, the nodal
values g; of approximation g(x) :Z giN; (X) = NTg follow from the steps

: . 1 Cen2ap L T, £\2
Distance: H(g)—EIQ (g-f) olA_zjQ (NTg- f)%dA,
Minimizer: Kg-F=0 where K:jQ NN'dA and F:jQ Nf dA,

Nodal values: ¢g= KF.

In practice, the nodal values g are solved from the linear equation system without matrix
Inversion (to avoid excess computational work). The method works in the same manner
irrespective of the series approximation used.
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Least Squares Method is useful in various tasks in numerical mathematics. One of the
applications is related with the condition for the minimum of IT, which can be written
In the form

jQ N;RdA=0 ie{0,1..}

where R=g(x,y)— f(x,y) is called as the residual. In the weighted residual
Interpretation of the method, linear equations giving the values of the approximation are
obtained as the weighted residuals with the shape functions. The idea extends to residuals
of differential equations and is one of the starting points for the Finite Element Method.
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EXAMPLE Let us consider function f(x,y)=sin(2zx/L)sin(zy/L)/2 on the square
domain (X,y) €[0,L]x[0,L]. Using regular triangle elements on a regular grid of points
(nodes), piecewise linear interpolant p(x,y), and the least-squares approximation g(x,y)

to f(x,y)are:
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Interpolant is accurate on the grid points but the interpolation error at the other points is
not controlled. As nodal values on the rough 3x 3 point grid vanish, also the interpolant
IS identically zero. Least squares method considers all points of the domain and control
the error everywhere. On the rough grid, the piecewise linear approximation is not
particularly accurate but better than that given by the interpolant. When the number of
elements is increase, both approximations converge to f (x,y).
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REGULAR GRID OF TRIANGLES

| v
0 1 2 i—1 i i+1 n
\ N \ j+1
| ¥ S ;
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APPROXIMATION TO DERIVATIVES

The weighted average, using N j), of a derivative of the piecewise linear interpolant
a:Z(i,j)elxl N pai ) where I'={01...,n} is interpreted as an approximation to
derivative at the interior grid points (multiplied by AA due to the integration).

Term Weighted residual
a(x, y) .[Q N(,’J)adA
oa oa
X .[Q N(i,j)&dA
2 2 ON/: - ON/: -
aa+aa ‘j ( (.,1)8aJr (.,J)aa)dA
x> oy? A ox ox oy oy
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As an example, let us consider the approximation

N, i) aa aN(. j) da \d
A,
)(' D= -[ ( OX ax Z er OX ax

where the sum is over the elements having the grid point (i, j) in common (N j
vanishes elsewhere). Considering the 6 elements separately and using the fact the
derivatives of the shape functions of a piecewise linear interpolation are piecewise
constants, and placing the origin of the coordinate system at (i, j):

(i — 1]+1) (i,j+1)
aa:a(i,j)—a(i—l,j) NG, j) _ 1 .

land 3: , =
i A o AX
(i—1)) &= (i+1,/)
2anda: 28 2 20D T4 ) , MNijy __ 1 fz
8X AX ax AX

i,j—1 i+1,7-1
. (j=1) G+1.j=1)



Therefore, the outcome

N, )aa Ay
)(. DED jAe ™ )dA~ X[a(i—l,j)_za(i,j)+a(i+1,j)])

differs from the expression by the Finite Difference Method by multiplier

AA= [ NG jydA = Axay

so the weighted residual approximation can be considered as the shape function
weighted average. The rule for finding the difference approximation by the weighted
residual method is the same for any division of the domain into triangle elements but the
outcomes may differ. For the regular triangle division used in the example (geometry is
the same for all interior grid points) the outcome can be described by a stencil of constant
weights.

6-18



STENCIL OF LAPLACIAN
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STENCIL OF IDENTITY MAPPING
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OTHER STENCILS

Even on a regular grid, derivative approximations based on the weighted residual expression
depend on the interpolation used. For a bi-linear interpolation (another common
Interpolation type in the Finite Element Method) based on four vertex points of rectangular
elements, the stencils for the identity and Laplacian operators take the forms:

1/36 1/9 1/36 . 1/3 1
[ v ? - ¢ v *3
3
4/9 1 -8/3
1/9 ¢ ? ® 1/9 3 ¢ ® 9 1/3
. ° ° 1 e ° o 1
1/36 1/9 1/36 < 1 3
3

In each element, bi-linear approximation is combination of 1, X, y, and xy. The shape
functions take the value one at one grid point and vanishes at all the other grid points.
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WEIGHTED RESIDUAL EXPRESSIONS FOR MEMBRANE

Difference equation approximation to the membrane model follow from the principle of
virtual work, triangle representation of the domain, piecewise linear approximation to the

transverse displacement, and using the shape functions as the weights:

Virtual work String Membrane
- - ON(; ON(;
Q "' X ox Q oy oy
xt '
SW © o, (N;f)ax Jo, (NG jy fdA
swine N Al Mg NG ot O a
—IQ (Nip at_z) X —IQ (N¢, j)o F)
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6.3 FINITE ELEMENT METHOD

Considering a regular grid of points of constant spacing Ax = Ay = h and linear interpolation
using a regular triangle division, the weighted residual expression for the membrane
problem give the difference equations (2-index notation)

S'[W(i—l,j) +W(i,j—l) _4W(i,j) +W(i+1,j) +W(i,j+l)]+ h2 f!—

th® ) ) o ) ) .
_,012 [Wei-1, j-2) + Wi, j) + Wi, j1) + 6%, §) + Weisg, j) + Wi, jo) T Weiva, jopy] (D) €1

W(i’j):O (I,j)e@l,
Wi, j)—9¢,j) =0 and Wi jy—hi;)=0 (@L)el,

where the interior grid point are denoted by | and the boundary grid points by ol .
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Finite Element Method replaces the differential equations by difference equations with
a compact and generic recipe for stencils of Identity, Laplacian etc. operators on regular
and irregular grid of points for all dimensions. The starting point is the weighted residual
expression implied by the principle of virtual work.

Using a regular triangle element representation of the solution domain, piecewise linear
Interpolation to the transverse displacements on the spatial grid, considering the
displacement values w; (t) as functions of time, and assuming constant properties, for
(i, 1) €{0,1,...,n}x{0,1,...,n}, the weighted residual expression

-, o MNaiiy w N, j) ow

ox ox oy ay)dA“LIQ N, jp f dA:IQ N, jypt—dA

gives the difference equation for the interior grid points | ={1,2...,n-1}x{1,2...,n-1}
(nodes)
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S'TWei-1,) * Wi 1y — Wi ) + Weisa, jy + Wi jep 1+ ' =

th? . ) ) ) ) ) )
€54WH¢®+WHM+WH&+mWD+WMM+WHm+WM¢mIt>0

On the boundary points ol , displacement vanishes (the second option, force loading on
the boundary, is not considered in this simplified setting) so

W(i’j)zO t>0.

Assuming that g and h of initial conditions are of the same form as the approximation,
the initial conditions

Wi, j)—9¢,j) =0 and wW; jy—hijp=0 (@ ))el.
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EXAMPLE A rectangular membrane of fixed edges and constant tightening s (force per
unit length) is loaded by pressures p + Ap acting on the upper surface and p acting on the
lower surface. Find the solution to the transverse displacement using the Finite Element
Method, regular triangle division of the domain with the regular grid (i, j) €{0,1,2}x{0,1,2}
, and a piecewise linear approximation to the transverse displacement.

1 p+Ap

2 2 2
Answer  Wq 1) = 1 AZL ~ 0. OGZSE—L (exact to the model 0.0737 —— ApL
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Finite Element Method is based on the principle of virtual work, element representation
of the domain, intrpolation of the grid values inside the elements, and using the shape
functions of the interpolation as the weights. In the present problem the interior and
boundary grid points and the equations for the grid points are

S'TW(i_1, jy + Wi, j-1) — AW, ) + Wi, jy + Wi, jo] +APN? =0 (0, j) e I ={L1)}

Wi, ) =0 (1,])edl ={0,1,2}x{0,1, 2}\{(L. D} (interior point excluded)

where Ax=Ax=h=L/2. Eliminating the displacements of the boundary points from
the equation for the interior point
12 1 ApL?

ST-4wp n]+Ap—=0 W1 ) = — .
[ (1,1)] P 1 = W 16 S
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EXAMPLE Consider a rectangular (side length L) drumhead of fixed edges, constant
tightening S’ (force per unit length) and density ot (per unit area). Find the frequencies of
the free vibrations by using the Finite Element Method on a regular grid | ={0,1,2}x{0,1,2}
with piecewise linear approximation to the transverse displacement.

Answer f = 2 2S z0.90l > (exact to the model z0.71l S—)
7L\ pt L\ ot L\ pt
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Finite Element Method uses the principle of virtual work, element representation of the
domain, interpolation of the grid point values inside the elements, and the shape
functions of the approximation as the weights. In the present problem the interior and
boundary grid points and the equations for the grid points are
S'TW(-1, 5y +Wei, -1 — AW, j) T Wi+, j) T Wi, j+p) ] =
;ﬂhz

B Wi, j-1y + Weia, j) + Wi, j-) + OWG, ) + Weiat, ) + Wai, j+1) T Weiea, jeny ] (1L 1) = (@),

Wi, ) =0 (1,]) €{0,1,2}x{0,1,2}\{(1,1)} (interior point excluded)

where Ax=Ax=h=L/2. Eliminating the displacements of the boundary points from
the equation for the interior point

) ) 4 /
W(l,l) + W(l,l) =0 where w=2xf = |_ 2— 7Z-|_
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6.4 NON-REGULAR GRIDS

Finite Element Method does not impose restrictions on the solution domain geometry or
require regularity of the grid or elements having the grid points as vertices. No matter the
case, function values at the grid points are interpolated inside the elements and the integrals

are calculated elementwise. The outcome is a set algebraic equations or ordinary differential
equations that can be solved with matrix methods.
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EXAMPLE A circular membrane of radius R, fixed edges, and constant tightening S’
(force per unit length) is loaded by pressure p+ Ap acting on the upper surface and p acting
on the lower surface. Find the transverse displacement at the centerpoint by using the Finite
Element Method and piecewise linear approximations on triangle elements.
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In numerical calculations, the problem parameters need to be given values unless the
number of grid points is small and the code used allows symbolic calculations (e.g.,
Mathematica does). Let us consider a combination for which the dimensionless group
ApRZIS’:4 and let Mathematica to do the triangulation and find the interior and

boundary points

Q = Disk[{0, ©}];

R = DiscretizeRegion[Q, MaxCellMeasure -» 0.05]

bR = RegionBoundary[R];

bp = MeshCells[bR, @] /. Point[any ] - any;

ip = Complement[Table[i, {i, 1, MeshCellCount[R, ©]}], bp];

After that, use the stencils of Laplacian and loading at the interior points (given by the
weighted residual expression and piecewise linear approximation to the transverse
displacement on the triangle representation) to find the matrix representation of the
equilibrium equations and solve for the displacements
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FF = LOAD[R, 4];

KK = LAPLACIAN[R];

iw = LinearSolve [KK[ [ip, ip]], -FF[[ip]l]1]
ww = Table[9, {i, 1, MeshCellCount[R, 0]}];
ww[[ip]] = iw;

Finally, some post-processing to check the outcome and find the maximal value of the
displacement

xyw = Transpose [Append [Transpose [MeshCoordinates[R]], ww]];
wR = MeshRegion[xyw, MeshCells[R, 2]];
Show [HighlightMesh [wR, {Style[{2}, Gray], Style[{1}, Black]}], Axes -» True, PlotLabel -> Max[ww] ]

For a picture about the discretization error, problem can be solved a few times by
reducing the size of the elements (reducing the parameter MaxCellMeasure in the
beginning of the Mathematica code):
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1.00712 0.996208
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0.995042 0.997305
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