Magnetism and applications 2021

The Sun-Earth magnetic coupling during last 100 years

Eija Tanskanen

Aalto University, ELEC, Espoo, Finland University of Oulu, Sodankylä Geophysical Observatory

Magnetic environment

Solar storms regularly released

The Sun and Earth are magnetically coupled

Satellite safety

Electricity

Food and water supply

Earth's total field in 2015

The variability of the ground field...

... is due to the changes in the Sun, solar wind and solid Earth.

Solar B-field complexity

The Sun-Earth geometry

Dipole tilt

onductivity

The solar storms

Core convection

Ionosphe

Surface morphology

Non-storm substorm at high-latitudes

Storm-time substorm at high-latitudes

Stronger substorms toward mid-latitudes

Decadal evolution of substorms

Substorm identification by search engine (Tanskanen, 2009)

Decadal evolution of storms

Latitudinal variability of the coupling

Solar cycle changes of Pc5 power

→ All latitudes enhanced during declining phase

Centennial variability of substorms

The Sun-Earth coupling since 1844

Seasonal variation of storms

Seasonal variation of substorms

Seasonal variation in individual years

Seasonal variation during SC23

Substorm energetics

→ Each substorm dissipate more energy into the ionosphere in late spring and summer compared to other seasons.

Seasonal variation in southern hemisphere

- → Similar variation than in the northern hemisphere
- The cause cannot be due to the dipole tilt or conductivity

Solar wind drivers of storms and substorms

Solar wind speed modulates geomagnetic activity

It is known that solar wind speed modulates geomagnetic activity in yearly time-scales. Here we have shown that the IL index follows solar wind speed also in monthly time-scales.

Linear correlation coefficient for v and IL index is r = 0.82 with the p-value 1.5 * 10^-44!

 \rightarrow Solar wind speed alone explains two third of the variability of the IL index at monthly time resolution ($r^2 = 0.67$).

Solar wind speed and substorm number

→ Substorm number follows closely solar wind speed.

Why?

Solar wind cross helicity plays a role

Alfvénic fluctuations embedded to fast speed

Extremely aligned and large-amplitude fluctuations peak in 2003 and enhance geomagnetic activity.

Double-peak structure in solar wind cross helicity

→ Magnetic fluctuations embedded to fast solar wind best enhance geomagnetic activity.

Active region complexity

Simple active regions

Complex active regions

a

βγδ

Solar cycle evolution of simple active regions

Simple active region = unipolar or bi-polar active region

Complex active regions, CARs

CARs maximize during second peak

Sun-Earth magnetic coupling

Complex active regions (CARs) produce complex interplanetary magnetic field. Hale classification used: α , β , $\beta\gamma$, $\beta\gamma\delta$...

Fast solar wind originating from the polar coronal holes carry solar wind fluctuations from the Sun towards the Earth.

Tanskanen et al., JGR, 2017a

Thank you!

Acknowledgements:

ReSoLVE CoE, G-EPOS & EPOS infrastructures
CubeMAG team, other collaborators and funding agencies.

CUBE MAG