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Today

* Markov decision processes
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Learning goals

* Understand MDPs and related concepts.
* Understand value functions.

* Be able to implement value iteration.
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[Markov]decision process
oy agent state s

— MDP
Environment observable

OZSE:SA

Defined by dynamics

observation z reward r action a P(s,.1|s,. a,)

And reward function

rt:r(sl‘+l’sl)

Solution e.g.

environment state

E

s Repre§ented as policy

a=m(s
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Markov property

“Future is independent of past given the present”

State sequence S is Markov iff < “ifand only if’

P(St+1|St):P(St+1|S1,'°') St)

State captures all history.
Once state is known, history may be thrown away.
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Markov process No “decision” here!

* Markov process is a memoryless random process, i.e.
random state sequence S with the Markov property.

* Defined as (S,T) 0.1
— S: set of states 6Aa
— T: S x S — [0, 1] state transition function
« T(s,s")=P(s=s'ls,=s)
* P can be represented as transition 0.4 0.3
probability matrix | 0.5 - / C
 State sequences called episodes 0_1 ’ 1_0
A” §§§§°§§:§§jﬂ*ica' How to calculate probability of a particular episode?

Starting from A, what is the probability of A,B,C?



Markov reward process

* Markov reward process =
Markov process with rewards
* Definedby (S, T,r, y)

— S, T :as above
— rn'S — % reward function
— y [0,1]: discount factor

 Accumulated rewards in finite
(H steps) or infinite horizon

H o0
2y 2

¥y Y r
t=0 t=0

Still no “decision”!

0.6

<> B
0.1

r=+1

 Return G: accumulated rewards from time t

H
A,, Aalto University G 2 : k
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k=0

Why discount?
Return of (A,B,C), y=0.9?



State value function for MRPs

* State value function V(s) is
expected cumulative rewards
starting from state s

V(S):E[Gt|5t:S] T

* Value function can be defined 0%
by Bellman equation 0.4 0.3

V(s)=E[G,|s,=s] B 05 »c
o

V<S) E[ t+1+yV( t+1)| :S] 01
r=+1 r=0

A!! O What is the value function for y=07?
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Markov decision process (MDP)

* Markov decision process

defined by (S,A, T, R, y)

— S, y:as above

— A: set of actions (inputs)

- 1:SxAxS—[0,1]
T(s,a,s")=P(s,.,=s'|s,=s,a,=a)

- R:SxAxS— ¥ reward function
rt(s,u,s’)zr(smzs’,Stzs,atza)

* Goal: Find policy wt(s) that maximizes
cumulative rewards.
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Policy

* Deterministic policy n(S):S — A is
mapping from states to actions.

* Stochastic policy nt(als): S,A — [0,1]
IS a distribution over actions given
states.

* Optimal policy m*(s) is a policy that is
better or equal than any other policy
(in terms of cumulative rewards)

— There always exists a deterministic
optimal policy for a MDP.
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MDP value function

» State-value function of an MDP is

expected return starting from

state s and following policy .

Vo(s)=E[Gls,=s]

* Can be decomposed into
immediate and future

components using Bellman
expectation equation

'

VW(S)_E [r+yV (St+1)|St_S]

Z T S :n: ) (S,:rc(s),s’) i

+yZS,T S,:rc( ), )V (s)
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Action-value function

* Action-value function Q is expected
return starting from state s, taking
action a, and then following policy .

O.(s,a)=E,[G|s,=s,a,=a]

* Using Bellman expectation equation

Qn(S Cl) [I’ +YQTE(St+l at+1|St:S’at:a)]
Qnsa ZTSCZS Sa,s')

+y ZS, T(s,a,s")O,.(s" m(s"))
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Optimal value function

* Optimal state-value function is maximum value function
over all policies.

V*(s)=max_V _(s)

* Optimal action-value function is maximum action-value
function over all policies.

O (s,a)=max,0.(s,a)

* All optimal policies achieve optimal state- and action-value
functions.

School of Electrical
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Optimal policy vs optimal value function
* Optimal policy for optimal action-value function
n*(s)=argmax QO (s, a)

* Optimal action for optimal state-value function
n*(s)=argmax E_[r(s,a,s')+yV*(s')]
o (S)Zargmaxazs, T(S, a, s ’)(r(s, a,s ’)+y |88 (S ’))
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Value iteration

Do you notice that this is an expectation?

» Starting from V' (s)=0 Vs
iterate

V,-il(s)zmaxazs, T(s,a,s ’)(r(s, a,s' )+yV/ (s ’))

until convergence.

* Value iteration converges to V*(s).

Compare to

G (s)=min

from last week!

(s, a)+G"(f(s,a));
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Iterative policy evaluation

* Problem: Evaluate value of policy m.

* Solution: Iterate Bellman expectation back-ups.
s V2V, 2.2,

* Using synchronous back-ups:

— For all states s
— Update V,,.(s) from V., (s’)

— Repeat
Vials)=2.  T(s,mu(s),s")r(s,(s),s )y V(s

V;m() 2., mla Is)

Z T S a,s' ( (S,a,S’)+ka(S’))

From slide 11.

A,, glht l; fEl . H
Engineerin Note: Starting point can be random policy.



V Greedy policy
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Policy improvement and policy iteration

* Given a policy =, it can be improved by
— Evaluating ' _
— Forming a new policy by acting greedily with respectto "

* This always improves the policy.

* lterating multiple times called policy iteration.
— Converges to optimal policy.
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Computational limits — Value iteration

* Complexity O(|A||S|?) per iteration.
* Effective up to medium size problems (millions of
states).

* Complexity when applied to action-value function
O(|Al?[S|?) per iteration.
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Summary

* Markov decision processes represent environments with
uncertain dynamics.

* Deterministic optimal policies can be found using state-
value or action-value functions.

* Dynamic programming is used in value iteration and
policy iteration algorithms.
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Next week: From MDPs to RL

* Readings
— SB Ch. 5-5.4, 5.6, 6-6.5
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