ELEC-E8125 Reinforcement learning
Function approximation

Ville Kyrki
20.9.2020

Today

* Function approximation for reinforcement learning.

,, Aalto University
School of Electrical

Engineering

Learning goals

* Understand basis and limitations of value function
approximation.

* Understand incremental and batch approaches.

,, Aalto University
School of Electrical

Engineering

https://www.youtube.com/watch?v=M-QUkgk3HyE
Motivation

How to solve problems with large state spaces?

For example:
— Backgammon: ~1020 states.

— Helicopter: continuous state space — infinite number of
possible states.

Value of each state can not be stored in memory.

It is difficult to collect enough experience (too slow to
learn each state independently).

Any other choices to represent V, Q?

, , Aalto University
School of Electrical

Engineering

https://www.youtube.com/watch?v=M-QUkgk3HyE

ttttttttt

Value function approximation

¥ % % %
%5 % %
4

* ldea: Represent value function as a parametric

approximation j (s, ew
\ &

parameter vector
* Function approximator types:
— Generalized linear ¥ (s5,0)=0"¢@(s) O(s,a,0)=0"@(s,a)
— Neural network

— Non-differentiable ones
Features, for example

* e.g. decision tree, tiling Radial basis function
— (S_Si)T zil(S_Si)
» ©; (S) —€
! 1. Tiling (grid)
- Polynomial basis
A” gilf;ol."li{’éfifft"ﬁcau How to optimize 67 Which criterion?
ngineering

Example: Locally weighted regression

_D_E 1 1 1 | + 1 1 1 1 1 |
0 10 20 30 40 a0 60 70 a0 90 100

Yunyuongmok, 2014

,, Aalto University
School of Electrical

Engineering

Stochastic gradient descent

* ldea: Minimize mean-squares error in approximation

J(0)=E|[V,(s)=V (5,0)f]

» Gradient descent updat Remember: 0;,,=0,+A0

1 . . .
AGZ——OLVGJ(O) « — Let's simplify!

« Stochastic gradient descent samples update

AGIOL(VE(S)—IA/(S,G))V@ TA/(S,G)

,AItU f

J
A ggmelc;'fi:g: e Where to get the target value?

Estimate state-value function

Incremental prediction

* MC:
AB=0(G,~V (s5,,0)|V,V (s, 8)

Remember discrete TD(0): ¥ (s,)=V (s,)+a(r,,+y V (s,.,)—V (s,),

* TD(0):

ABO=alr, tYy IA/(SHI,G)—T?(SI,B))VQ IA/(St,G)
 TD(ML):

AGZOLEt rt+1+yV<)_ ())

Et:ykEt—l-l-VG (6)

, Aalto University :

J
A Enamerng O vector

(Generalized)
Linear function approximation

* Linear Monte-Carlo policy evaluation
AO=q (Gt— 124 (St’ 9)) V, I?(St, @) < Whatis the gradient?
=a|G,—7(s,.0)|@(s,)
— Converges to local optimum.
* Linear TD(0)
Ae —a rt+1+y IA/(‘SHI’ e)_ 17 (St’ 6))cp (St)
— Converges on-policy to local optimum.

* Linear TD(M)
E=yLE, _+9(s,)

,, Aalto University
School of Electrical

Engineering

Convergence of prediction

Algorithm Discrete Linear Non-linear
On-policy MC + + +
TD(0) + + -
TD(\) + + -
Off-policy MC + + +
TD(0) + - -
TD()) + - -

School of Electrical

A” Aalto University Gradient TD (non-linear GTD2, Maei 2009) converges
S UCE off-policy with non-linear function approximation.

Incremental control

* Approach
— Approximate policy evaluation for O (s, a,0)
— ¢-greedy policy improvement

* Policy evaluation for Q similar to V.
- MC, TD

* SARSA and Q-learning also possible.

,, Aalto University
School of Electrical

Engineering

Approximation for action-value function

* Minimize MSE for O(s,a,0).
MC

A0=a(G,~Ols,, 4,0)|V,0(s,.a,0)

TD(0) / SARSA

AB=aolr,, +yOl(s,. . a,.0)—0(s,, a,,ﬂ))VBQ(S,, a,, o)

TD()) / SARSA(M)
AO=a E, rt+1+YQ(Sz+1’ at+1)_Q(Sl" al‘))

,, Aalto Un
Scho Iof EI t cal
Engineering

Convergence properties

Algorithm Discrete Linear Non-linear
MC + (+) -
SARSA + (+) .
Q-learning + - -

GQ(7) (Maei&Sutton, 2010) convergent off-policy learning.

,, Aalto University
School of Electrical

Engineering

Batch prediction

* Sample efficiency important when few samples.
* Batch methods find single best fit for given data.

* One approach: Experience replay + stochastic gradient
descent

— Given data D, sample (state s,value V(s)) randomly and apply
stochastic gradient descent update, repeat.

AB=a (Vn(s)— V (s, 9))Ve V(s,0)
— Converges to least-squares solution.

Aalto University j

9 | . |
A Engineering " Not very efficient, convergence can take a long time.

Linear Least Squares for prediction

With linear approximation, closed form solution available

e LSMC . A
E[A68]=Y a[G~ (s, 6)p(s)=0 Some

=3 ols)ols)| X ols)R
LSTD)
0=/ o(s)lo(s)-yols.)| X ols)r.,

LSTD())
9 =

T

2 Elols)-yols.)

,, Aalto Un
School fEI t cal
Engineering

LSTDQ + LSPI

* Off-policy batch evaluation: LSTDQ

T

. CP(St,af)(m(st,af)—ycp(sm,ﬂ(S\m)))T
* Update policy to greedy. 7T (S): argmaxaQ(S, a)
* Repeat until (approximate) convergence.

0= tzl(p(st’at>rt+l

,, Aalto Un
Scho Iof EI t cal
Engineering

Convergence of control

SARSA

LSPI

,, Aalto University
School of Electrical

Engineering

https://www.youtube.com/watch?v=V1eYniJORnk

Example: Deep Q networks
(Atarl games, Mnih 2013, 2015)

Learn Q(s,a) directly from pixels, output joystick/button
position.

* Reward change in score.

* Approximate Q using a deep neural network.

* ¢-greedy policy.

* Experience replay, optimize Q-network in LS sense
using stochastic gradient descent variant.

,, Aalto Un
Scho Iof EI t cal
Engineering

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, = ¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s¢),a; 0)
Execute action a, in emulator and observe reward r, and image x; -
Set s, 1 =S$:,41,% 41 and preprocess ¢, . | =¢(s;41)
Store transition ((bt,at,rt,(bt +1) in D
Sample random minibatch of transitions ((b-,aj,f},(bj +1) from D

7 if episode terminates at step j+ 1
Sety; = rj+7 maxy Q(¢-+l,a’; 9_) otherwise

j
2
Perform a gradient descent step on (yj -0 (q’)-,aj; 9)) with respect to the
network parameters 0

Every C steps reset Q=Q
End For
End For

,, Aalto University_
A Engineering " Mnih et al. Nature, 2015

Schematic illustration of the convolutional neural network.

Convolution Convolution Fully connected Fully connected
v v v v
_ |
| o\ e o
: o\ =B
S A\ 3
. o N
Al
rE t \\ 1
S: N v
e \\¢
®© E o

J [] L]
g vV /1
\':;ﬁ) °
e v/ |
: e/ 4

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

,, Aalto University l l al l Ire
School of Electrical

Engineering

Summary

* Value function approximation for large and continuous
state-spaces.

* Convergence can be tricky especially for non-linear or
off-policy cases.

A!! sl Still limited action spaces. We'll later take a look at
Engineering optimal control that works in continuous action space.

Next: Policy gradient and actor-critic
approaches

* Do we need value functions?
— Can we parametrize and optimize policy directly?

* Readings
— Sutton&Barto Ch 13-13.3

,, Aalto University
School of Electrical

Engineering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

