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Today

* Direct policy learning via policy gradient.
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Learning goals

* Understand basis and limitations of policy gradient
approaches.
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Motivation https://www.youtube.com/watch?v=xyJAvghtqIM

* Even with value function approximation, large state
spaces can be problematic.

* Learning parametric policies n(als, 6) directly without
learning value functions sometimes easier.

* Non-Markov (partially observable) or adversarial
situations might benefit from stochastic policies.
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https://www.youtube.com/watch?v=xyJAvghtqIM

Value-based vs policy-based RL

VALUE FUNCTION POLCY>

Value-based Actor-critic Policy-based
* Learned value function. - Learned value function. * No value function.
* Implicit policy. * Learned policy. * Learned policy.

- Can learn stochastic
policies.
- Usually locally optimal.

,, Aalto University
School of Electrical

Engineering



Stochastic policies

* Discrete actions: Soft-max policy Probability portional to
_ 0" ¢(s,.a,) 4« expontiated linear
ne(af|sl‘)_ 1/ Ze combination of features.

Normalization cTorEstan)t
— 0 (s, q
/= Za e
* Continuous actions: Gaussian policy

Mean is linear
ﬂe(at|st) ~N(0" @ (St>, 02) combination of features.

Can also be understood as linear policy plus
exploration uncertainty

To(a]s,) =67 @(s J+e e~N(0,0%)

A!! Aalto Unlversity Note: Policies include exploration!
But how to fit these?
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Note: This is not RL!

Supervised policy learning — behavioral
cloning

* Assume examples of policy are given in form of (x,u)
pairs.

* How to fit a stochastic policy to these?

Jte(at|st)~N(9Tcp(st),02) ~  — Example

,, Aalto University
School of Electrical

Engineering



Note: This is not RL!

Supervised policy learning — behavioral
cloning

* Assume examples of policy are given in form of (x,u)
pairs. Assume independent examples.

* How to fit a stochastic policy to these?

ne(at|s1)~N(9Tcp(St),02) ~  — Example

* Maximum likelihood parameter estimation

— Here: maximize probability of actions given states and
parameters.

P<A|S > H)ZHt ﬂe(at|5t)

Aalto Universi
A” School of Elsctrical How to proceed?
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Example: Maximum likelihood estimation

* Maximize log-likelihood

P(A|S,’H)=Ht,77;0(at|st) N(M (52) ! e_ 20
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Example: Maximum likelihood estimation

* Maximize log-likelihood

—(a—u)®
1 e 20°

P(AlS; 0)=] T, 7als) N(u,ﬁz)wmgz

log P(A[S;6)=2. log m,(als)
Vleg P(A[S;6)=), Vlog my(ajls,)

A!! Aalto University But we don’t have examples

School of Electrical
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What is a good policy?

* How to measure policy quality?

T

R(B)=E|2, _ ¥'r,

* More generally,
Can also represent

> average reward per
time step.

General time scaling factor

A,, Aalto University
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Policy gradient

* Use gradient ascent on R(6).

* Update policy parameters by

6m+1: em+am‘V6R|e:\em

* How to calculate gradient? "
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Guarantees convergence to

T
— local minimum.
Depends on 6.
A!! Aalto University How to estimate gradient from data (if we
Engineering have a chance to try different policies)?



Finite difference gradient estimation

* What is gradient?

Vector of partial derivatives.

* How to estimate derivative?

* For policy gradient:

)—f(x)

Finite difference:f'(x)mf(x““dx

Generate variation A ©

I

. L - H
Estimate experimentally R(6+A 0, )~ R.= Z

Compute gradient [g;y R, "=[A
Repeat until estimate converged

dx

/ Not easy to choose.

e’'Ae|"

A”

Aalto University
School of Electrical
Engineering

Where does thiAs come from?
RiNRref-I-gTAei



Likelihood-ratio approach

* Assume trajectories tau are generated by roll-outs, thus

H

t~pe(t)=p(tl8) R(t)=2 _ cr
Expected return can then be written
R(8)=E.[R(%)|=] po(t)R(t)d

Gradient is thus

_f Vi pe T)R(t)d T
. Likelihood ratio “trick”:
=] 1o(%)Velog po(t) R(v)d v Substitute

Why do that? =£- Vlog pe(t )R(T)} VBPB(T):PB(T>VelogP9(T)
];(!:p t+1|s a JT’B( t|st)

A” galhtot; féf?’ _Try substitution for log-gradient! V, logpe Z Vlog J'E9< tlst)

Engineerin
We know this!



Example differentiable policies

Normalization constant missing.

* Soft-max policy Probability proportional to
( ) 0 (s, a) exponentiated linear
mgla,ls,)ce

combination of features.
— Log-policy (score function)

VB logﬂ:e(at|st):(p(st’ at)_Ene (P(St’ ' )]
* Gaussian policy Mean is linear
Tce(at|st) ~N(0" @ (St>, 02) combination of features.
— Log-policy
a,—0 s S
Velogne(at|st):( t cp(z t))@( t)

O

Can also be understood as linear policy plus
,, Aalto University . .
P’ St exploration uncertainty
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Example differentiable policies

Normalization constant missing.

* Discrete neural net polic/ Probability proportional to

exponentiated neural
<
mola,ls,)oc /s @) network output.

* Gaussian neural network policy

mo(als,)~N(fyls,). 0)

V,logmy(als,)= (uz—fe(st))zvefe(st)
o

A!! aalolpiversity OK, now to applying the policy gradient:

School of Electrical
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MC policy gradient — REINFORCE

* Episodic version shown here.

Reward for trial /.

* Approach:
— Perform episode J (=1,2,3,...). .
— Estimate gradient gRE=ET{(Zt:0 Vologmg(a,s,) mean

1 J H il i
~ZL |2, Velogm (1s)][Z,

— Update policy and repeat with new trial(s) until convergence.

* No need to generate policy variations because of
stochastic policy.

R (l)] Use empirical
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Limitations so far

* High variance (uncertainty) in gradient estimate because
of stochastic policy.

* Slow convergence, hard to choose learning rate.
— Parametrization dependent gradient estimate.

* On-policy method.
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Decreasing variance by adding baseline

 (Constant baseline can be added to reduce variance of
gradient estimate.

VGR(6)=E,[Velogpe(1:)(R(1:)—b)}
=,V log ps(t) R ()]
* Does not cause bias because

E,[Volog pe(t)b|=] po(t)V4log pyl(t)bd T =
| Vop,(t bd'c bV, [ pe(t)dt=bV,1=0

§9 Aaitouniversity  INtuition:
A Eg.néé}fif' et Modifying rewards by a constant

does not change optimal policy.



Episodic REINFORCE with optimal

baseline

* Optimal baseline for episodic REINFORCE (minimize
variance of estimator):

H 2 In practice, approximate
b = E‘[(Ztﬂ) Vo logmy(als,) R‘] by%mpirical r?faan
h I 2 (average over trials).
E-c [(tho Veh lOg ne (atl St)
* Approach:

— Perform trial J (=1,2,3,...).
— For each gradient element h Component-wisel!

* Estimate optimal baseline bh | < . o |

* Estimate gradient g, :j Zi:1 [(tho Ve log ne(a[tl]|s£l]) (R (i) —b[h’])]

— Repeat until convergence.

Aalto Uni it . . . . .
A” Sehool of Electrical Even with optimal baseline, variance can be an issue.
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Policy gradient theorem

e Observation: Future actions do “don't take into account past rewards

when evaluating the effect of an
not depend on paSt rewards. action” (causality, taking an action

E[Ve log Tce(at|st)rk]: 0 Y >k canonly affect future rewards)

* PGT:

— Reduces variance of estimate —
Fewer samples needed on
average.

H k
gror =L Zk:O(tho Vehlog J-[7E)(at|st) (akrk_bZ)]

,, Aalto University’
A Engineering Note: If only rewards at final time step, this is
equivalent to REINFORCE.



Off-policy policy gradient

* What if we have samples from another policy (e.g.
earlier timesteps)?

Optimize Er~n9(1)[R(T>l
using samples from n'(t) - exploration policy
_ _ Where does this
* Use importance sampllng' come from?
)= p(s)f(s) e
p(s )
=E,. f(s)
q(s) q(s)
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Off-policy policy gradient

* What if we have samples from another policy (e.g.
earlier timesteps)?

Optimize Er~n9(r)[R(T)l
using samples from T’ (‘C) - exploration policy
_ _ Where does this
* Use importance sampllng' come from?
N=[ pls)r(s)ds  »
Weight samples by
=% (s) p< )f( ) their relative
q (S) probability
A” g Em:::rfi:s; ctrical ThUS, optimize E‘ENJ'IZ ,<t) ge’ E:EE)) R (‘E)




Off-policy policy gradient

t~n'(1)

* We had earlier

H
Hp t+1|st a (at|st)
t=0

* Thus . )
“e(T):p(SO)g p(s”l|st’af)n9(a’tlst)_gﬁe(aJS,)

(1) i ~H
p(SO)Hp(SH1|St’at)ﬂ:’(at|st) Hn'(aJst)
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Off-policy policy gradient

* Now the gradient

T\ T
VGEr~n’(r) e( )R(

7‘76(17)
e

L1

:Er~n’(r)[

Compare to on-policy (REINFORCE)
VG ETNJES(‘C) R (t)l:

OOOOOOOOOOOOOOOOO




Will be used later!

Gradient vs natural gradient

* Gradient depends on (a)*Vanilla’ policy gradlents (b) Natural policy gradtents-.

] . L 0.5 L 0.5
parametrization. o 0405 ,1:% TN o 0.4
: 2 0.3 41—t g
* Natural gradient 3 02 {H?—T{—? :
parametrization BOL 1Ly ¢!
. o i S Y R o £ ; B
independent. A 0915 1% =05 00™ *% =15 -0 =05 00
Controller gain 8,=£ Controller gain #,=F&
NG _ 1
Ve ne(a|s>—Fe Veﬂ:e(a|s) Intuition: Divide gradient update

by second derivative.
Normalizes parameter influence.

* Fisher information matrix
Fe:E[Velog Tl:e(a|s)velog “e<a|S)T]

,, Aalto University
A Engineering " Potentially improves convergence significantly,

in practice sample-based approximation less useful.



Summary

* Policy gradient methods can be used for stochastic
policies and continuous action spaces.

* Finite-difference approaches approximate gradient by
policy adjustments.

* Likelihood ratio-approaches calculate gradient through
kKnown policy.

* Policy gradient often requires very many updates
because of noisy gradient and small update steps —
slow convergence.
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Next: Actor-critic approaches

* Can we combine policy learning with value-based
methods?

* Readings
— Sutton&Barto Ch 13.5
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