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Learning goals

* Understand how optimal control relates to model-based
reinforcement learning.
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Motivation from two perspectives

* Reinforcement learning has limited sample efficiency.

— Locally optimal control has recently shown progress for control
of complex systems.

* For example, whole body control of a humanoid robot
https://www.youtube.com/watch?v=vl-8xgJ6ct0

— But optimal control requires knowing the system dynamics.

* Learned policies are task(reward-function)-specific,
learned knowledge cannot be reused.
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https://www.youtube.com/watch?v=vI-8xgJ6ct0

Anatomy of reinforcement learning

Fit a model to
estimate return

Run policy to
generate samples
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Anatomy of reinforcement learning
Policy gradient

Estimate V,R (policy gradient)

Fit a model to

estimate return

7 \

- Update
policy

. 0¢<0+aV,R(0) (policy gradient)
Run policy to

generate samples
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Anatomy of reinforcement learning
Value-function based

Estimate V,R (policy gradient)
Fit O, (s,a) (Q-learning, actor-critic)

Fit a model to

estimate return

0¢<0+aV,R(0) (policy gradient)

- SLEE orgnar,0,(5.a) (Qqiearing)
policy

Run policy to

generate samples
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Anatomy of reinforcement learning
Model-based

Estimate V,R (policy gradient)
Fit O, (s,a) (Q-learning, actor-critic)
Estimate p(s..ls..a)  (model-based)

0¢<0+aV,R(0) (policy gradient)

Run policy to argmaquq,(S,a) (Q-learning)
Optimize my(als) (model-based)

Fit a model to

estimate return

generate samples
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Anatomy of reinforcement learning
Model-based

Ei del Estimate V(R (policy gradient)
Ii.a rr;o < tto Fit O, (s, a) (Q-learning, actor-critic)
ESHIaie (S Estimate p(s..ls..a) (model-based)

. 0¢<0+aV,R(0) (policy gradient)
Run policy to Upd.ate argmax,Q,(s,a) (Q-learning)
generate samples policy Optimize my(als) (model-based)

\\

Today this for known dynamics.
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Solving (deterministic, finite-horizon)
optimal control problems

mina1 ..... aTZtC(St’at) §. L. St+1:f(st’at)

Can also be written as:

Wlina1 ..... aTC(Sl’ a1)+C(f(S1, al)’ a2)+...+C(f(f(..

How to solve these?
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Shooting vs collocation

Shooting methods: Optimize actions

Collocation methods: Optimize actions and states
(constrained optimization)

minal,...,aTZtC(st’at) s. L. St+1:f(st’at)

A” School of Electrical How to solve optimal control
Fraineering with linear dynamics?



LQR (linear-quadratic regulator)
Problem definition (finite horizon)

selspa)re(f(s) a) a)+..+c(F(f(...), ar)

EERRE T

f(st’at):(At Bt) >

+f,=F, j; +f,

at t
T T
1 S S S Note: We will follow notation
C, ( S¢s at) — d Ct | ! C, that clumps together state
2 a, a, a, and action, opposite to
T traditional control literature,
_ _ because most recent RL
Note: costs for different time steps may vary. papers use that. We also
For example, different costs for final time step. include the bias term from
the beginning.
)N R AR I b
Cat st Cat’at cat




LQR partial derivation, final step

min,, . .0 ¢ (s a)te(f sy ) )+ +c(f(F(...)). ar)

/
N
- S Only cost depending on a
f(st’at>_Ft ! +ft d
at
1 T T
LS S S
Cz<st’at>_§ LGl e
at at at
Action-value function:
(s, T r 2
_ S S S
Q(ST) aT)—ConSt"'E TV Cr|"T+7T e a,=K s +k,
ar ar ar

va,Q (ST’ aT):CaT,sT ST+CaT,aTat+ca,:O

c,'.|c kr=—Cae o
— T°%r
aT_ a,,a, at,stst+cat D \ )
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LQR partial derivation, final step
min, . . c(sy,a)tc(f(s, a), a)+..+c(f(f(...), a

a,= KTsT+k K, ——C_ 0 Cas kT:_CaT a0 Ca
State-value function (by substitution):
T T
V(ST)Zconst+— St C, St + St Cr
2\ K, s,p+k, K, s;+k;| \K;s;+k;

State value function is quadratic in 5, !

T T
V(ST>:COI’IS1+—ST VT ST+STVT

2
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Visy) =const+;— St

LQR partial derivation, other steps

T
Visrtsrvy

quadratic
- A N quadratic
1 T r = A
Q(St’ at>:COnSt+5 " ¢, AR ct+V(.f(st’at)>
at at at
1 T T
=const+5 o 0, St |45 q,
a, a,| \a,
_ T
O=C+F, V. F, Note: We skip here the
q,=c,+ FtT Vt+1ft+FtT"t+1 derivation of V', v,

A” Sehool of Electrical Let’s optimize the action! (how?)
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1
V(sT)zconst+2— si V, sT+s£vT

LQR partial derivation, other steps

quadratic
AN '
~ ~ quairatlc
s\ s\ [s\ 7 A
Q(StJ at):COI/lSt+_ ! Ct L+ ! Ct+V(f<St’at>)
2 at at at
1 T T
=const+=| > 0, i |43 q,
2 at at at

Qt:Ct+FtTVt+1Ft
qt:ct-l_FtTVt+1ft+FtTvt+l
V.0(s.a)=0, ,5+0,..a+q =0
| a=K,s+k K=-0,,0,. k=—0..4q. |

Aalto University . . . . .
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LQR algorithm

Backward recursion: Forward recursion:
Fort=T down to 1 Fort=1to T
Qt:Ct+Fth+1Ft at:KtSt-I-kt
_ T T — ( a )
qt_ct+Ft Vt+1ft+Ft vt+1 St+1 f S, Ay
~1
Kt:_Qa,,s,Qa,,s,
—1
kt:_Qa,,a,qa,

— T T
Vt_Qs,,s,+Qs,,a,Kt+Kt Qa,,s,+Kt Qa,,a,Kt
T T
vt:qs,+Qs,,a,kt+Kt qa,+Kt Qa,,a,kt

T

First.: compute the gains. Then: apply the law to
compute controls.
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System uncertainty / stochastic

dynamics /Gaussian noise

f(st’at):Ft Zt +ft+wt thN<0’2t)
t
p(st+1|st’ at)NN F, flt +f,, 2,
t

* Alinear system with Gaussian noise can be controlled
optimally using separation principle:
— Use optimal observer (Kalman filter) to observe state.
— Control system using LQR with mean predicted state.

* No change in algorithm!

A” Sehool of Electrical But many systems are not linear?
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Non-linear systems -
Iterative LQR

* Approximate a non-linear system as a linear-quadratic

s
f(st’at)_Ft t
at
1 T T
C[(St,at)zz > C, Sl O &
at at at
A A A A A g
Fls,a)~f(3,8)+V, f(3,a)* )
a,—a,
1 [s.—5, | w2 S, —S S,—§
Ct(st at):C(St at)"'z_ SN Vst,atc<st at) ¢V, atc<st at) SN
a,—a, a,—a, a,—a,
A” gil.t;olf'éi{’ Electrical Note: System dynamics known and differentiable!
ngineering




Non-linear systems -
Iterative LQR

f(st’at)Nf(gt’&t)-Fvs,,af(gt’&t) st_it)
a,—a,

1 A T A A

Ct(st’at)zc(gt’&)-'-z_ " it Vi,atc(,\t At) % it +V, a[C<ASt &t> O

a,—a, a,—a, a,—da,

v ds _ 1 (os.\" (65 ) [6s)
0s,,0a,)=F t c.(0s,0u,)]=— t| C t |+ t
f( t t) f 6at t( t t) D 6at t 661, 6at t
Vst,af(gt’ &t)
V:.c(3,a) V,..c(5, a)
A” gggi{g{szg*y"“' Thus we have a LQR in 6st, 6at



Iterative LQR (iLQR) — Algorithm outline

Repeat
Ft:vs[,atf(gt’ Z\lt>
C,=V; ,cl8.a,)

Run LQR backward pass with 8 5,, d a,
Run LQR forward pass with real dynamics and ¢,=K ,0 s,+k +a,
Update §,, @, to results of forward pass

until convergence

Practical considerations:

* Usually receding horizon is used: At every time-step, state is
observed, iLQR is applied, and (only) first action is executed.

* On first iteration, gradients can be evaluated at starting point.

School of Electrical

Engineering Synthesis and Stabilization of Complex Behaviors
through Online Trajectory Optimization.

A” Aalto University Good source for details: Tassa, Erez, Todorov (2012).



Anatomy of reinforcement learning
Model-based

Ei del Estimate V,R (policy gradient)
g meezl e Fit O, (s,a) (Q-learning, actor-critic)

estimate return Estimate p(s.ils.a) (model-based)

7 \

Run policy to

0¢<0+aV,R(0) (policy gradient)
Upd.ate argmax,0,(s,a) (Q-learning)
policy Optimize 7t,(als) (model-based)

generate samples

School of Electrical
Engineering
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Teaser: Basic iterative model-based RL

Input: base policy T,
Run base policy to collect data D(—{(s, a,s ’),-}
Repeat
Fit dynamics model f (s, @) to minimize Zi If (s, a,)—s,||?
Use model to plan (e.g. iLQR) actions
Execute first planned action, observe resulting state s’
Update dataset D¢ DU{(s, a,s’)}

Viewpoint: Use learned model as “simulator” that allows exploring various
options to choose one that is (locally) optimal.
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Summary

* Optimal control for linear systems with quadratic costs
can be determined with LQR.

* Locally optimal control for nonlinear systems can be
performed using linearization of dynamics in iterative
LQR.

* Model-based reinforcement learning aims especially to
increase data efficiency.
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Next: Model-based RL - for real

* What kind of dynamics model to use?
* Can we optimize a general policy function as well?

* Reading: Sutton & Barto, ch. 8-8.2
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