
ELEC-E8125 Reinforcement Learning
Model-based RL

Ville Kyrki

27.10.2020

Learning goals

• Understand basic approaches for model-based
reinforcement learning.

Anatomy of reinforcement learning
Model-based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)
Estimate (model-based)

∇θ R

p(st+1∣st , at)

 (policy gradient)
 (Q-learning)
Optimize (model-based)

θ←θ+α∇ θ R(θ)

πθ(a∣s)

Qϕ (s , a)

argmax uQϕ(s , a)

Motivation (partial recap)

• Reinforcement learning has limited sample efficiency.

• Learned policies are task(reward-function)-specific,
learned policies cannot be directly reused.

• Learned dynamics model is reusable and can be used to
reason about potential futures.

• Sometimes we know the model, e.g. in games!

Model definition and types

• Dynamics model or

• Reward model or

• Models are usually learned.
– Parametric regression (e.g. neural net) common.

• May be also known (e.g. games, simulators)
– Even physics based models need to be often calibrated.

• Also other possibilities (active research area)
– Latent variable models, graph neural networks, non-parametric

regression models such as Gaussian processes, ...

s t+1= f (st ,a t)

r t+1=r (st , at)

f (st+1∣st ,a t)

r (r t+1∣st ,at)

Which model to use?

Gaussian process (GP)

• Data-efficient

• Slow with big datasets

• May be too smooth for
non-smooth dynamics

Neural networks

• Expressive

• Unpredictable with
sparse data (overfit)

Linear models

• May be used locally

• Do not overfit

Domain specific parametric models (e.g. physics parameters) can also be used.
→ Traditional control engineering approach of model identification + control.

Spectrum of model-based RL

Time of planning

On-line
● Act on current state
● Act without learning
● Better in unfamiliar situations

Off-line
● Fast online computation
● Predictable within

familiar situations

learn to act in
any situation
(learn policy)

how to act in
current situation
(choose action)

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

We kind of saw this already
last week.

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

D←{(s ,a , s ')i }

f (s ,a) ∑i
‖ f (si ,a i)−si '‖

2

D←D∪{(s , a , s ')}

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient.
● Computationally expensive for two reasons.

● Dynamics fitting costly → model may be fitted only periodically (every n steps).
● Planning costly for long horizons.

● Robust to moderate model errors.
● Choice of regression model is an important design parameter.

This is model-predictive control (MPC) with learned dynamics.
MPC horizon length is limited, can we do something?

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient.
● Computationally expensive for two reasons.

● Dynamics fitting costly → model may be fitted only periodically (every n steps).
● Planning costly for long horizons.

● Robust to moderate model errors.
● Choice of regression model is an important design parameter.

This is model-predictive control (MPC) with learned dynamics.
MPC horizon length is limited, can we do something?

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

Combining parametric policy with
learned dynamics by backpropagation

r ta t

s t

θ

r t−1a t−1

s t−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Backprop ~ chain rule of partial derivatives

dynamicsrewardpolicy

∇θπ (st , a t)
∇s r (s t , a t)

∇a r (s t , a t) ∇s f (s t−1 , a t−1)

∇a f (st−1 , a t−1)

Combining parametric policy with
learned dynamics by backpropagation

Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Calculate policy gradient update by backpropagating through dynamics
 Execute updated policy (1 or more steps), collect data
 Update dataset

D←{(s ,a , s ')i }

f ϕ(s ,a) ∑i
‖f ϕ(s i , ai)−s i '‖

2

D←D∪{(s , a , s ')}

r t

θ

r t−1

Backprop ~ chain rule of partial derivatives

a t

st

a t−1

st−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Tools handle this automatically
by automatic differentiation.

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient.
● Computationally expensive for two reasons.

● Dynamics fitting costly → model may be fitted only periodically (every n steps).
● Planning costly for long horizons.

● Robust to moderate model errors.
● Choice of regression model is an important design parameter.

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Example
PILCO (Deisenroth&Rasmussen, 2011)
• Dynamics learning: Use Gaussian process

models to include model uncertainty.
Known quadratic reward.

• Simulation: Simulate trajectory with learned
model, including uncertainty.

• Policy: Radial basis function.
• Policy update: Calculate analytically policy

gradient using learned dynamics and
optimize with quasi-Newton optimizer
(BFGS).

• GP → Very sample efficient. Cannot handle
large dataset.

Reward function can also be learned
using GP, e.g. BlackDROPS (2017).

• Idea: Learn also regression function for rewards.

• BlackDROPS (2017) uses a Gaussian process to model
reward function as well as dynamics.

• Uses CMA-ES (gradient free optimizer) for planning.

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

Simulate environment to generate
additional data: DYNA

Update using experience

Update using
simulated experience

Learn dynamics
model

Generate data
by simulating
dynamics

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

Monte Carlo tree search

• Search method for optimal decision making.

• State-of-the-art for playing games (e.g. Alpha Go).

• Iteratively builds a search tree.
• Phases:

– Selection: Choose a promising node to expand.
– Expansion: Add a new node.

– Simulation: Simulate value for new node.

– Backup: Back-up value to root (update values for parents).

MCTS operation

• From start node S choose actions
to walk down tree until reaching a
leaf node.

• Choose an action and create a
child node N for that action.

• Perform a random roll-out (take
random actions) until end of
episode (or for a fixed horizon).

• Record returns as value for N and
back up value to root.

Node selection in MCTS

• Node selection in search has to balance exploration and
exploitation (note difference to RL, here x&x is made
only using simulation).

• Idea: Explore when uncertain of outcome.

• Upper confidence bound 1 (UCB1) on trees (UCT).
– A bound for value of a node (Kocsis&Szepesvari, 2006).

Q+
(s , a)=Q(s , a)+c √

logN (s)
N (s , a)

Positive exploration constant Visitation count

MCTS simulation phase

• Perform one or several roll-outs from leaf node using
random action selection.

• Stop at terminal state or until a discount horizon is
reached.

• Estimate value of state as mean return of the N
simulations:

V (s)=
1
N∑i

Gi

MCTS: Example in game playing

• Value number of won games.

Example: Alpha Go (2016)

• Policy learned initially to imitate human players.
• Updated through policy gradient and self-play.

Δθ∝∇ θ log p (a t∣st)Rt

Δ ϕ∝∇ϕV ϕ(s)(R−vϕ (s))

Example: Alpha Go (2016)

• Action chosen by MCTS.
• Action evaluation uses estimated value and a roll-out.

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...

The ideas can also be combined!

Summary

• Model-based RL requires typically less data than value-
based or policy gradient approaches.

• Learned dynamics can be transferred across tasks.

• Potentially suboptimal: models do not optimize for task
performance and policy optimization may be prone to
local minima.

• Sometimes models are harder to learn than policy.
• Often require explicit choices (e.g. time horizon).

Next: Partial observability and POMDPs

• Next week: Guest lecture!

Afterwards:
• What changes if we cannot observe state directly?

• Reading: Tony Cassandra’s on-line tutorial (see
MyCourses for details)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

