

Safety and Constrained Optimal Control

Gökhan Alcan

♥ Dept. of Electrical Engineering and Automation

gokhan.alcan@aalto.fi

www.gokhanalcan.com

November 3, 2020

Reinforcement Learning

► How would you define *safety* in RL?

- How would you define safety in RL?
- Safety in RL is an active research topic!

- How would you define safety in RL?
- Safety in RL is an active research topic!
- ► The agent is trained to *maximize the expected return* in a given task ...

- How would you define safety in RL?
- Safety in RL is an active research topic!
- ➤ The agent is trained to *maximize the expected return* in a given task *while not taking any action* that *gives damage* to the environment or itself during learning and/or deployment.

Safe RL

Risk-directed Exploration

- Risk-directed Exploration
- Utilization of External Knowledge

- Utilization of External Knowledge

- Worst Case Criterion
- **Risk-Sensitive Criterion**

Safe Exploration

OpenAl Safety-Gym

Safe Exploration

OpenAl Safety-Gym

Some Methods

- Constrained Policy Optimization
- Proximal Policy Optimization
- Trust Region Policy Optimization
- PPO Lagrangian
- ► TRPO Lagrangian

Utilization of External Knowledge

Worst Case Criterion

Risk-Sensitive Criterion

Constrained Optimal Control

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases}$ Inquality Constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases}$ Inquality Constraints

Feasible Set:

$$\Omega = \{x \mid c_i(x) = 0, i \in \mathcal{E} \text{ and } c_i(x) \ge 0, i \in \mathcal{I}\}$$

$$\implies \min_{x \in \Omega} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases}$ Inquality Constraints

Feasible Set:

$$\Omega = \{x \mid c_i(x) = 0, i \in \mathcal{E} \text{ and } c_i(x) \geq 0, i \in \mathcal{I}\}$$

$$\implies \min_{x \in \Omega} f(x)$$

Active Set:

$$\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(x) = 0\}$$

At a feasible point x, the inequality constraint $i \in \mathcal{I}$ is said to be active if $c_i(x) = 0$ and inactive if the strict inequality $c_i(x) > 0$ is satisfied.

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

Q: What is feasible set?

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

Q: What is feasible set?

A: Feasible set for this problem is a circle of radius $\sqrt{2}$ centered at origin. (Just boundary, not interior)

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$

Q: What is the solution x^* ?

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$

Q: What is the solution x^* ?

A:
$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\nabla f(x^*) = \lambda_1^* \nabla c_1(x^*) \quad \lambda_1^* = -1/2$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = x_1^2 + x_2^2 - 2$$

$$\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = x_1^2 + x_2^2 - 2$$

$$\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = x_1^2 + x_2^2 - 2$$

$$c_2(x) = x_1^2 + x_2^2 - 2$$

$$\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

$$abla_{\mathcal{X}}\mathcal{L}(x,\lambda_1) =
abla f(x) - \lambda_1 \triangle c_1(x)$$

$$1 - 2\lambda_1^* x_1 = 0 \quad \text{and} \quad 1 - 2\lambda_1^* x_2 = 0$$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = x_1^2 + x_2^2 - 2$$

$$\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda_1) = \nabla f(\mathbf{x}) - \lambda_1 \triangle c_1(\mathbf{x})$$

$$1 - 2\lambda_1^* x_1 = 0$$
 and $1 - 2\lambda_1^* x_2 = 0$

Let's check our solution
$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
, $\lambda_1^* = -1/2$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$\int_{x_1, x_2} f(x) = x_1 + x_2$$

$$c_1(x) = x_1^2 + x_2^2 - 2$$
Let's introduce Lagrangian function
$$\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$$

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

$$\nabla_{x}\mathcal{L}(x,\lambda_{1})=\nabla f(x)-\lambda_{1}\triangle c_{1}(x)$$

$$1 - 2\lambda_1^* x_1 = 0$$
 and $1 - 2\lambda_1^* x_2 = 0$

Let's check our solution
$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
, $\lambda_1^* = -1/2$

$$1-2(-1/2)(-1)=0$$
 and $1-2(-1/2)(-1)=0$

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda_1) = \nabla f(\mathbf{x}) - \lambda_1 \triangle c_1(\mathbf{x})$$

$$1 - 2\lambda_1^* x_1 = 0$$
 and $1 - 2\lambda_1^* x_2 = 0$

Q: What about
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\lambda_1 = 1/2$?

A Single Equality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 2 = 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = x_1^2 + x_2^2 - 2$
 $\mathcal{I} = \emptyset, \quad \mathcal{E} = \{1\}$

Let's introduce Lagrangian function

$$\mathcal{L}(x,\lambda_1)=f(x)-\lambda_1c_1(x)$$

At solution x^* , there is a scalar λ_1^* such that $\nabla_x \mathcal{L}(x^*, \lambda_1^*) = 0$

This condition is **necessary** but **not sufficient**.

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = 2 - x_1^2 - x_2^2$
 $\mathcal{I} = \{1\}, \quad \mathcal{E} = \emptyset$

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = 2 - x_1^2 - x_2^2$
 $\mathcal{I} = \{1\}, \quad \mathcal{E} = \emptyset$

Q: What is feasible set?

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

 $c_1(x) = 2 - x_1^2 - x_2^2$
 $\mathcal{I} = \{1\}, \quad \mathcal{E} = \emptyset$

Q: What is feasible set?
A: Now, feasible set consists of the circle and its interior!

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\mathcal{I} = \{1\}, \quad \mathcal{E} = \emptyset$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Constraint normal ∇c_1 points toward the interior of the feasible region at each point on the boundary of the circle.

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\mathcal{I} = \{1\}, \quad \mathcal{E} = \emptyset$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Q: What is the solution x^* ?

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$I = \{1\}, \quad \mathcal{E} = \emptyset$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Q: What is the solution x^* ?

A:
$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- retains feasibility,
- decreases the objective function f(x) to first order.

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- retains feasibility,
- decreases the objective function f(x) to first order.

Approximate $c_1(x)$ to first order: $c_1(x+s) \approx c_1(x) + \triangledown c_1(x)^\top s$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

 $c_1(x) = 2 - x_1^2 - x_2^2$
 $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} -2x_1 \end{bmatrix}$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- retains feasibility,
- decreases the objective function f(x) to first order.

Approximate
$$c_1(x)$$
 to first order: $c_1(x+s) \approx c_1(x) + \triangledown c_1(x)^\top s$
If **s** retains feasibility $\implies c_1(x) + \triangledown c_1(x)^\top s \geq 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- ullet retains feasibility, $\implies c_1(x) + \triangledown c_1(x)^\top s \geq 0$
- decreases the objective function f(x) to first order.

Similarly, approximate f(x) to first order: $f(x+s) \approx f(x) + \nabla f(x)^{\top} s$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- ullet retains feasibility, $\implies c_1(x) + \triangledown c_1(x)^\top s \geq 0$
- decreases the objective function f(x) to first order.

Similarly, approximate f(x) to first order: $f(x+s) \approx f(x) + \nabla f(x)^{\top} s$ f(x) is decreasing $\implies f(x+s) - f(x) < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- retains feasibility, $\implies c_1(x) + \triangledown c_1(x)^\top s \ge 0$
- decreases the objective function f(x) to first order.

Similarly, approximate f(x) to first order: $f(x+s) \approx f(x) + \nabla f(x)^{\top} s$ f(x) is decreasing $\implies f(x+s) - f(x) < 0$ $f(x) + \nabla f(x)^{\top} s - f(x) < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

- ullet retains feasibility, $\implies c_1(x) + \triangledown c_1(x)^\top s \geq 0$
- decreases the objective function f(x) to first order.

Similarly, approximate f(x) to first order: $f(x+s) \approx f(x) + \nabla f(x)^{\top} s$ f(x) is decreasing $\implies f(x+s) - f(x) < 0$ $\frac{f(x)}{f(x)} + \nabla f(x)^{\top} s - f(x) < 0 \implies \nabla f(x)^{\top} s < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

A given feasible point **x** is **not optimal**, if we can find a small step **s** that **both**

C1: • retains feasibility,
$$\implies c_1(x) + \nabla c_1(x)^{\top} s \ge 0$$

C2: • decreases the objective function
$$\implies \nabla f(x)^{\top} s < 0$$
 $f(x)$ to first order.

A Single Inequality Constraint

Single Inequality Constraint
$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0 \qquad \forall f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \forall c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 1: Given **x** lies strictly inside the circle, $c_1(x) > 0$

Q: How would you select s?

 $f(x)=x_1+x_2$

Remember the conditions:

C1: $c_1(x) + \nabla c_1(x)^{\top} s \geq 0$ C2: $\nabla f(x)^{\top} s < 0$

 X_1, X_2

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 1: Given **x** lies strictly inside the circle, $c_1(x) > 0$

Q: How would you select s?

 $\mathbf{s} = -\alpha \nabla f(x)$ for any positive scalar α sufficiently small.

Remember the conditions:

C1: $c_1(x) + \nabla c_1(x)^{\top} s \ge 0$ **C2:** $\nabla f(x)^{\top} s < 0$

A Single Inequality Constraint

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 1: Given **x** lies strictly inside the circle, $c_1(x) > 0$

Q: How would you select s?

 $\mathbf{s} = -\alpha \nabla f(\mathbf{x})$ for any positive scalar α sufficiently small.

However, no step **s** is given when $\nabla f(x) = 0$

Remember the conditions:

C1: $c_1(x) + \nabla c_1(x)^{\top} s \ge 0$ **C2**: $\nabla f(x)^{\top} s < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\begin{bmatrix} 1 \end{bmatrix} \qquad \begin{bmatrix} -2x_1 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2$$
 s.t. $2 - x_1^2 - x_2^2 \ge 0$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0 \qquad \forall f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \forall c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

Remember **C1**: $c_1(x) + \nabla c_1(x)^{\top} s > 0$.

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

 $c_1(x) = 2 - x_1^2 - x_2^2$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

Remember C1: $c_1(x) + \nabla c_1(x)^{\top} s \geq 0$.

C1: $\forall c_1(x)^{\top} s \geq 0$

C2: $\nabla f(x)^{\top} s < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

C1:
$$\nabla c_1(x)^{\top} s \geq 0 \rightarrow Closed half-space$$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

C1: $\forall c_1(x)^{\top} s \geq 0 \rightarrow \textit{Closed half-space}$

C2: $\nabla f(x)^{\top} s < 0 \rightarrow Open \ half-space$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

C1: $\nabla c_1(x)^{\top} s \geq 0 \rightarrow Closed half-space$

C2: $\nabla f(x)^{\top} s < 0 \rightarrow Open \ half-space$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

If ∇f and ∇c_1 point in the opposite direction

$$\nabla f = \lambda_1 \nabla c_1$$
 for some $\lambda_1 < 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

If ∇f and ∇c_1 point in the opposite direction

 $\nabla f = \lambda_1 \nabla c_1$ for some $\lambda_1 < 0$ Intersection region is entire open half-space!

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

If ∇f and ∇c_1 point in the same direction

$$\nabla f = \lambda_1 \nabla c_1$$
 for some $\lambda_1 \geq 0$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\begin{bmatrix} 1 \end{bmatrix} \qquad \begin{bmatrix} -2x_1 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

If ∇f and ∇c_1 point in the same direction

$$\triangledown f = \lambda_1 \triangledown c_1 \text{ for some } \lambda_1 \geq 0$$

Intersection region is **empty!**

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

Case 1: Given **x** lies strictly inside the circle,
$$c_1(x) > 0$$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) > 0$

Optimality Conditions for both Case 1 and Case 2:

When no first order feasible descent direction exists at some point x^* , we have that

$$\nabla_{x}\mathcal{L}(x^{*},\lambda_{1}^{*})=0$$
 for some $\lambda_{1}^{*}\geq0$.

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$[1] \qquad [-2x_1]$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 1: Given **x** lies strictly inside the circle, $c_1(x) > 0$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

Optimality Conditions for both Case 1 and Case 2:

When no first order feasible descent direction exists at some point x^* , we have that

$$\nabla_{x}\mathcal{L}(x^{*},\lambda_{1}^{*})=0$$
 for some $\lambda_{1}^{*}\geq0$.

We also require: $\lambda_1^* c_1(x^*) = 0 \rightarrow \textit{Complementarity Condition}$

A Single Inequality Constraint

$$f(x) = x_1 + x_2$$

$$c_1(x) = 2 - x_1^2 - x_2^2$$

$$[1] \qquad [-2x_1]$$

$$\min_{x_1, x_2} x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla c_1 = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}$$

Case 1: Given **x** lies strictly inside the circle, $c_1(x) > 0$

Case 2: Given **x** lies on the boundary of the circle, $c_1(x) = 0$

Optimality Conditions for both Case 1 and Case 2:

When no first order feasible descent direction exists at some point x^* , we have that

$$\nabla_{x}\mathcal{L}(x^{*},\lambda_{1}^{*})=0$$
 for some $\lambda_{1}^{*}\geq0$.

We also require: $\lambda_1^* c_1(x^*) = 0 \rightarrow \textit{Complementarity Condition}$

 λ_1 can be strictly positive only when the corresponding c_1 is active.

$$egin{aligned} & egin{aligned} & egi$$

$$egin{aligned} & egin{aligned} & egi$$

Often known as the Karush-Kuhn-Tucker (KKT) conditions.

Robotic Application: Safe Trajectory Optimization

$$egin{aligned} \min_{\mathbf{u}_0,...,\mathbf{u}_{N-1}} & \ell_f(\mathbf{x}_N) + \sum_{k=0}^{N-1} \ell(\mathbf{x}_k,\mathbf{u}_k) \ & \text{subject to} & \mathbf{x}_{k+1} = f(\mathbf{x}_k,\mathbf{u}_k), \ & oldsymbol{g}(\mathbf{x}_k,\mathbf{u}_k) \geq \mathbf{0}, \end{aligned}$$

Robotic Application: Safe Trajectory Optimization

$$egin{aligned} \min_{\mathbf{u}_0,...,\mathbf{u}_{N-1}} & \ell_f(\mathbf{x}_N) + \sum_{k=0}^{N-1} \ell(\mathbf{x}_k,\mathbf{u}_k) \ \end{aligned}$$
 subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k,\mathbf{u}_k), \ oldsymbol{g}(\mathbf{x}_k,\mathbf{u}_k) \geq \mathbf{0},$

Safety in RL is an active and popular research area.

- Safety in RL is an active and popular research area.
- ▶ Definitions and methodologies are subject to change depending on the applications and requirements.

- Safety in RL is an active and popular research area.
- Definitions and methodologies are subject to change depending on the applications and requirements.
- Adapting optimization procedure to safety requirements are often preferred, especially for a known / partially known transition dynamics and environment.

- Safety in RL is an active and popular research area.
- Definitions and methodologies are subject to change depending on the applications and requirements.
- Adapting optimization procedure to safety requirements are often preferred, especially for a known / partially known transition dynamics and environment.
- This adaptation for constrained optimal control should be performed in such a way that the KKT conditions must be satisfied.