Safety and Constrained Optimal Control

Gökhan Alcan

- Dept. of Electrical Engineering and Automation

Mokhan.alcan@aalto.fi
© www.gokhanalcan.com
November 3, 2020

Reinforcement Learning

Safety in Reinforcement Learning

- How would you define safety in RL?

Safety in Reinforcement Learning

- How would you define safety in RL?
- Safety in RL is an active research topic!

Safety in Reinforcement Learning

- How would you define safety in RL?
- Safety in RL is an active research topic!
- The agent is trained to maximize the expected return in a given task ...

Safety in Reinforcement Learning

- How would you define safety in RL?
- Safety in RL is an active research topic!
- The agent is trained to maximize the expected return in a given task while not taking any action that gives damage to the environment or itself during learning and/or deployment.

Safety in Reinforcement Learning

Safe RL

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safety in Reinforcement Learning

Safe Exploration

OpenAI Safety-Gym

Safe Exploration

OpenAI Safety-Gym

Some Methods

- Constrained Policy Optimization
- Proximal Policy Optimization
- Trust Region Policy Optimization
- PPO Lagrangian
- TRPO Lagrangian

Safety in Reinforcement Learning

Constrained Optimal Control

Constrained Optimization

$\min _{x \in \mathbb{R}^{n}} f(x) \quad$ subject to $\left\{\begin{array}{lll}c_{i}(x)=0, & i \in \mathcal{E} & \text { Equality Constraints } \\ c_{i}(x) \geq 0, & i \in \mathcal{I} & \text { Inquality Constraints }\end{array}\right.$

Constrained Optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { subject to }\left\{\begin{array}{lll}
c_{i}(x)=0, & i \in \mathcal{E} & \text { Equality Constraints } \\
c_{i}(x) \geq 0, & i \in \mathcal{I} & \text { Inquality Constraints }
\end{array}\right.
$$

Feasible Set:

$$
\begin{aligned}
\Omega= & \left\{x \mid c_{i}(x)=0, i \in \mathcal{E} \quad \text { and } \quad c_{i}(x) \geq 0, i \in \mathcal{I}\right\} \\
& \Longrightarrow \min _{x \in \Omega} f(x)
\end{aligned}
$$

Constrained Optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to }\left\{\begin{array}{lll}
c_{i}(x)=0, & i \in \mathcal{E} & \text { Equality Constraints } \\
c_{i}(x) \geq 0, & i \in \mathcal{I} & \text { Inquality Constraints }
\end{array}\right.
$$

Feasible Set:

$$
\begin{aligned}
\Omega= & \left\{x \mid c_{i}(x)=0, i \in \mathcal{E} \quad \text { and } \quad c_{i}(x) \geq 0, i \in \mathcal{I}\right\} \\
& \Longrightarrow \min _{x \in \Omega} f(x)
\end{aligned}
$$

Active Set:
$\mathcal{A}(x)=\mathcal{E} \cup\left\{i \in \mathcal{I} \mid c_{i}(x)=0\right\}$
At a feasible point x, the inequality constraint $i \in \mathcal{I}$ is said to be active if $c_{i}(x)=0$ and inactive if the strict inequality $c_{i}(x)>0$ is satisfied.

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$
x_{1}, x_{2}

Constrained Optimization

A Single Equality Constraint

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$ x_{1}, x_{2}

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$ x_{1}, x_{2}

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Q: What is feasible set?

Constrained Optimization

A Single Equality Constraint

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

$$
\begin{aligned}
& f(x)=x_{1}+x_{2} \\
& c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
& \mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{aligned}
$$

Q: What is feasible set?
A: Feasible set for this problem is a circle of radius
$\sqrt{2}$ centered at origin. (Just boundary, not interior)

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$ x_{1}, x_{2}

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\} \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\} \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right]
\end{gathered}
$$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\} \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right]
\end{gathered}
$$

Q: What is the solution x^{*} ?

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$ x_{1}, x_{2}

$$
\nabla f\left(x^{*}\right) / / \nabla c_{1}\left(x^{*}\right)
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\} \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right]
\end{gathered}
$$

Q: What is the solution x^{*} ?
A: $x^{*}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$
$\nabla f\left(x^{*}\right)=\lambda_{1}^{*} \nabla c_{1}\left(x^{*}\right) \quad \lambda_{1}^{*}=-1 / 2$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Constrained Optimization

A Single Equality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad x_{1}^{2}+x_{2}^{2}-2=0
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$

Constrained Optimization

A Single Equality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad x_{1}^{2}+x_{2}^{2}-2=0
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x, \lambda_{1}\right)=\nabla f(x)-\lambda_{1} \triangle c_{1}(x) \\
& 1-2 \lambda_{1}^{*} x_{1}=0 \quad \text { and } \quad 1-2 \lambda_{1}^{*} x_{2}=0
\end{aligned}
$$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x, \lambda_{1}\right)=\nabla f(x)-\lambda_{1} \triangle c_{1}(x) \\
& 1-2 \lambda_{1}^{*} x_{1}=0 \quad \text { and } \quad 1-2 \lambda_{1}^{*} x_{2}=0
\end{aligned}
$$

Let's check our solution $x^{*}=\left[\begin{array}{l}-1 \\ -1\end{array}\right], \lambda_{1}^{*}=-1 / 2$

Constrained Optimization

A Single Equality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad x_{1}^{2}+x_{2}^{2}-2=0
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x, \lambda_{1}\right)=\nabla f(x)-\lambda_{1} \triangle c_{1}(x) \\
& 1-2 \lambda_{1}^{*} x_{1}=0 \quad \text { and } \quad 1-2 \lambda_{1}^{*} x_{2}=0
\end{aligned}
$$

Let's check our solution $x^{*}=\left[\begin{array}{l}-1 \\ -1\end{array}\right], \lambda_{1}^{*}=-1 / 2$

$$
1-2(-1 / 2)(-1)=0 \quad \text { and } \quad 1-2(-1 / 2)(-1)=0
$$

Constrained Optimization

A Single Equality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad x_{1}^{2}+x_{2}^{2}-2=0$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x, \lambda_{1}\right)=\nabla f(x)-\lambda_{1} \triangle c_{1}(x) \\
& 1-2 \lambda_{1}^{*} x_{1}=0 \quad \text { and } \quad 1-2 \lambda_{1}^{*} x_{2}=0
\end{aligned}
$$

Q: What about $x=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda_{1}=1 / 2$?

Constrained Optimization

A Single Equality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad x_{1}^{2}+x_{2}^{2}-2=0
$$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=x_{1}^{2}+x_{2}^{2}-2 \\
\mathcal{I}=\emptyset, \quad \mathcal{E}=\{1\}
\end{gathered}
$$

Let's introduce Lagrangian function

$$
\mathcal{L}\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

At solution x^{*}, there is a scalar λ_{1}^{*} such that $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$
This condition is necessary but not sufficient.

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{aligned}
f(x) & =x_{1}+x_{2} \\
c_{1}(x) & =2-x_{1}^{2}-x_{2}^{2} \\
\mathcal{I} & =\{1\}, \quad \mathcal{E}=\emptyset
\end{aligned}
$$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{aligned}
& f(x)=x_{1}+x_{2} \\
& c_{1}(x)=2-x_{1}^{2}-x_{2}^{2} \\
& \mathcal{I}=\{1\}, \quad \mathcal{E}=\emptyset
\end{aligned}
$$

Q: What is feasible set?

Constrained Optimization

A Single Inequality Constraint

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{aligned}
& f(x)=x_{1}+x_{2} \\
& c_{1}(x)=2-x_{1}^{2}-x_{2}^{2} \\
& \mathcal{I}=\{1\}, \quad \mathcal{E}=\emptyset
\end{aligned}
$$

Q: What is feasible set?
A: Now, feasible set consists of the circle and its interior!

Constrained Optimization

A Single Inequality Constraint

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=2-x_{1}^{2}-x_{2}^{2} \\
\mathcal{I}=\{1\}, \quad \mathcal{E}=\emptyset \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
-2 x_{1} \\
-2 x_{2}
\end{array}\right]
\end{gathered}
$$

Constraint normal ∇c_{1} points toward the interior of the feasible region at each point on the boundary of the circle.

Constrained Optimization

A Single Inequality Constraint

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=2-x_{1}^{2}-x_{2}^{2} \\
\mathcal{I}=\{1\}, \quad \mathcal{E}=\emptyset \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
-2 x_{1} \\
-2 x_{2}
\end{array}\right]
\end{gathered}
$$

Q: What is the solution x^{*} ?

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\begin{gathered}
f(x)=x_{1}+x_{2} \\
c_{1}(x)=2-x_{1}^{2}-x_{2}^{2} \\
\mathcal{I}=\{1\}, \quad \mathcal{E}=\emptyset \\
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
-2 x_{1} \\
-2 x_{2}
\end{array}\right]
\end{gathered}
$$

Q: What is the solution x^{*} ?
A: $x^{*}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step \mathbf{s} that both

- retains feasibility,
- decreases the objective function $f(x)$ to first order.

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step s that both

- retains feasibility,
- decreases the objective function $f(x)$ to first order. Approximate $c_{1}(x)$ to first order: $c_{1}(x+s) \approx c_{1}(x)+\nabla c_{1}(x)^{\top} s$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step s that both

- retains feasibility,
- decreases the objective function $f(x)$ to first order. Approximate $c_{1}(x)$ to first order: $c_{1}(x+s) \approx c_{1}(x)+\nabla c_{1}(x)^{\top} s$ If \mathbf{s} retains feasibility $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$

Constrained Optimization

A Single Inequality Constraint

$$
\begin{aligned}
f(x) & =x_{1}+x_{2} \\
c_{1}(x) & =2-x_{1}^{2}-x_{2}^{2}
\end{aligned}
$$

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$ $\nabla f=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}-2 x_{1} \\ -2 x_{2}\end{array}\right]$

A given feasible point \mathbf{x} is not optimal, if we can find a small step \mathbf{s} that both

- retains feasibility, $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
- decreases the objective function $f(x)$ to first order.

Similarly, approximate $f(x)$ to first order: $f(x+s) \approx f(x)+\nabla f(x)^{\top} s$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step s that both

- retains feasibility, $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
- decreases the objective function $f(x)$ to first order.

Similarly, approximate $f(x)$ to first order: $f(x+s) \approx f(x)+\nabla f(x)^{\top} s$ $f(x)$ is decreasing $\Longrightarrow f(x+s)-f(x)<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step s that both

- retains feasibility, $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
- decreases the objective function $f(x)$ to first order.

Similarly, approximate $f(x)$ to first order: $f(x+s) \approx f(x)+\nabla f(x)^{\top} s$ $f(x)$ is decreasing $\Longrightarrow f(x+s)-f(x)<0$

$$
f(x)+\nabla f(x)^{\top} s-f(x)<0
$$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
A given feasible point \mathbf{x} is not optimal, if we can find a small step s that both

- retains feasibility, $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
- decreases the objective function $f(x)$ to first order.

Similarly, approximate $f(x)$ to first order: $f(x+s) \approx f(x)+\nabla f(x)^{\top} s$ $f(x)$ is decreasing $\Longrightarrow f(x+s)-f(x)<0$

$$
f(x)+\nabla f(x)^{\top} s-f(x)<0 \Longrightarrow \nabla f(x)^{\top} s<0
$$

Constrained Optimization

$$
f(x)=x_{1}+x_{2}
$$

A Single Inequality Constraint

$$
c_{1}(x)=2-x_{1}^{2}-x_{2}^{2}
$$

$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$

$$
\nabla f=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \nabla c_{1}=\left[\begin{array}{l}
-2 x_{1} \\
-2 x_{2}
\end{array}\right]
$$

A given feasible point \mathbf{x} is not optimal, if we can find a small step \mathbf{s} that both

C1: • retains feasibility, $\Longrightarrow c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
C2: • decreases the objective function $\Longrightarrow \nabla f(x)^{\top} s<0$ $f(x)$ to first order.

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$

Q: How would you select s?

Remember the conditions:
C1: $c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
C2: $\nabla f(x)^{\top} s<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$

Q: How would you select s?

$\mathbf{s}=-\alpha \nabla f(x)$
for any positive scalar α sufficiently small.

Remember the conditions:
C1: $c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
C2: $\nabla f(x)^{\top} s<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$

Q: How would you select s?

$\mathbf{s}=-\alpha \nabla f(x)$ for any positive scalar α sufficiently small.

However, no step s is given
when $\nabla f(x)=0$
Remember the conditions:
C1: $c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$
C2: $\nabla f(x)^{\top} s<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
Remember C1: $c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$.

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
Remember C1: $c_{1}(x)+\nabla c_{1}(x)^{\top} s \geq 0$.
C1: $\nabla c_{1}(x)^{\top} s \geq 0$
C2: $\nabla f(x)^{\top} s<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
C1: $\nabla c_{1}(x)^{\top} s \geq 0 \rightarrow$ Closed half-space

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
C1: $\nabla c_{1}(x)^{\top} s \geq 0 \rightarrow$ Closed half-space
C2: $\nabla f(x)^{\top} s<0 \rightarrow$ Open half-space

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
C1: $\nabla c_{1}(x)^{\top} s \geq 0 \rightarrow$ Closed half-space
C2: $\nabla f(x)^{\top} s<0 \rightarrow$ Open half-space

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
If ∇f and ∇c_{1} point in the opposite direction
$\nabla f=\lambda_{1} \nabla c_{1}$ for some $\lambda_{1}<0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
If ∇f and ∇c_{1} point in the opposite direction
$\nabla f=\lambda_{1} \nabla c_{1}$ for some $\lambda_{1}<0$
Intersection region is entire open half-space!

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
If ∇f and ∇c_{1} point in the same direction
$\nabla f=\lambda_{1} \nabla c_{1}$ for some $\lambda_{1} \geq 0$

Constrained Optimization

A Single Inequality Constraint
$\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad$ s.t. $\quad 2-x_{1}^{2}-x_{2}^{2} \geq 0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
If ∇f and ∇c_{1} point in the same direction
$\nabla f=\lambda_{1} \nabla c_{1}$ for some $\lambda_{1} \geq 0$
Intersection region is empty!

Constrained Optimization

A Single Inequality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad 2-x_{1}^{2}-x_{2}^{2} \geq 0
$$

Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
Optimality Conditions for both Case 1 and Case 2:
When no first order feasible descent direction exists at some point x^{*}, we have that

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0 \text { for some } \lambda_{1}^{*} \geq 0
$$

Constrained Optimization

A Single Inequality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad 2-x_{1}^{2}-x_{2}^{2} \geq 0
$$

Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
Optimality Conditions for both Case 1 and Case 2:
When no first order feasible descent direction exists at some point x^{*}, we have that

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0 \text { for some } \lambda_{1}^{*} \geq 0
$$

We also require: $\lambda_{1}^{*} c_{1}\left(x^{*}\right)=0 \rightarrow$ Complementarity Condition

Constrained Optimization

A Single Inequality Constraint

$$
\min _{x_{1}, x_{2}} x_{1}+x_{2} \quad \text { s.t. } \quad 2-x_{1}^{2}-x_{2}^{2} \geq 0
$$

Case 1: Given \mathbf{x} lies strictly inside the circle, $c_{1}(x)>0$
Case 2: Given \mathbf{x} lies on the boundary of the circle, $c_{1}(x)=0$
Optimality Conditions for both Case 1 and Case 2:
When no first order feasible descent direction exists at some point x^{*}, we have that
$\nabla_{X} \mathcal{L}\left(x^{*}, \lambda_{1}^{*}\right)=0$ for some $\lambda_{1}^{*} \geq 0$.
We also require: $\lambda_{1}^{*} c_{1}\left(x^{*}\right)=0 \rightarrow$ Complementarity Condition
λ_{1} can be strictly positive only when the corresponding c_{1} is active.

Constrained Optimization

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0, \\
& c_{i}\left(x^{*}\right)=0, \quad \text { for all } i \in \mathcal{E}, \\
& c_{i}\left(x^{*}\right) \geq 0, \quad \text { for all } i \in \mathcal{I}, \\
& \lambda_{i}^{*} \geq 0, \quad \text { for all } i \in \mathcal{I}, \\
& \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \quad \text { for all } i \in \mathcal{E} \cup \mathcal{I} .
\end{aligned}
$$

Constrained Optimization

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0, \\
& c_{i}\left(x^{*}\right)=0, \quad \text { for all } i \in \mathcal{E}, \\
& c_{i}\left(x^{*}\right) \geq 0, \quad \text { for all } i \in \mathcal{I}, \\
& \lambda_{i}^{*} \geq 0, \quad \text { for all } i \in \mathcal{I}, \\
& \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \quad \text { for all } i \in \mathcal{E} \cup \mathcal{I} .
\end{aligned}
$$

Often known as the Karush-Kuhn-Tucker (KKT) conditions.

Constrained Optimization

Robotic Application: Safe Trajectory Optimization

$$
\begin{aligned}
\min _{\mathbf{u}_{0}, \ldots, \mathbf{u}_{N-1}} & \ell_{f}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} \ell\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\
\text { subject to } & \mathbf{x}_{k+1}=f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\
& \boldsymbol{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \geq \mathbf{0}
\end{aligned}
$$

For details: G. Alcan, and V. Kyrki, "Differential Dynamic Programming with Nonlinear Safety Constraints Under System Uncertainties", arXiv:2011.01051, 2020.

Constrained Optimization

Robotic Application: Safe Trajectory Optimization

$$
\begin{aligned}
\min _{\mathbf{u}_{0}, \ldots, \mathbf{u}_{N-1}} & \ell_{f}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} \ell\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\
\text { subject to } & \mathbf{x}_{k+1}=f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\
& \boldsymbol{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \geq \mathbf{0}
\end{aligned}
$$

Summary

Summary

- Safety in RL is an active and popular research area.

Summary

- Safety in RL is an active and popular research area.
- Definitions and methodologies are subject to change depending on the applications and requirements.

Summary

- Safety in RL is an active and popular research area.
- Definitions and methodologies are subject to change depending on the applications and requirements.
- Adapting optimization procedure to safety requirements are often preferred, especially for a known / partially known transition dynamics and environment.

Summary

- Safety in RL is an active and popular research area.
- Definitions and methodologies are subject to change depending on the applications and requirements.
- Adapting optimization procedure to safety requirements are often preferred, especially for a known / partially known transition dynamics and environment.
- This adaptation for constrained optimal control should be performed in such a way that the KKT conditions must be satisfied.

