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Today

* POMDPs towards largish real world problems.
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Learning goals

* How to solve complex POMDPs by
(i) approximating value function,
(i) considering only part of belief space, and
(iif) treating solution process as search.
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POMDP application examples in robotics

* Intention-aware planning for autonomous vehicles (Bai
et al., 2015)

* Grasping (Hsiao et al. 2007, Horowitz et al. 2013)

* Manipulation of multiple objects (Pajarinen&Kyrki 2015)
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https://www.youtube.com/watch?v=UHKULAtzaFk

“Curses’” of POMDP

* Curse of dimensionality
— Complexity exponential in number of states
— Double exponential in dimensionality of state space

* Curse of history
— Complexity exponential in length
of history
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Curse of history with value iteration

* Number of possible policies is exceedingly high.

V(b)
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Approximating value function

* Point-based approximation (e.g. Point-based value
iteration, Pineau 2003)
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Belief-space sampling

* Instead of calculating back-ups for whole
belief space, use a set of points to
approximate.

* Instead of using points uniformly, use a
set of points reachable from a starting
belief.
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Point-based POMDP approaches

* PBVI, Pineau et al., 2003

— Sample reachable points under arbitrary policy.

« SARSOP, Kurniawati et al., 2008

— Sample reachable points under optimal policy.

* Point-based methods help with larger belief spaces.
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On-line approaches

* |dea: Search reachable beliefs from current state.

* Basic algorithm
— Plan starting from current belief.
— Execute first step.
— Update belief.
— Repeat.

Similar idea to receding horizon optimal control!
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On-line planning equates to search

* Build a search tree from current belief.
— Start from a tree with one node corresponding to current belief.
— Choose a node to expand.
— Choose an action based on (optimistic) heuristic.
— Choose an observation based on another heuristic.
— Expand tree and backup back to root.
— Repeat

* Execute the best action.
* Update belief.
* Repeat.
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Reminder: Monte-Carlo tree search

* From start node S choose actions $
to walk down tree until reachinga | = i (7) \
leaf node. e/ /\' \\
: A\
* Choose an action and create a / \/ <N\
O———UCT Border 0

child node N for that action.
* Perform a random roll-out (take 2 \

! Random !
random actions) until end of e

episode (or for a fixed horizon). " @
* Record returns as value for N and
back up value to root.
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From MCTS to POMCP (Silver&Veness,
2010)

 Extension of MCTS to POMDPs.

* Search tree represents histories (actions and
observations) instead of states.

* Belief state approximated by a particle filter.

— After taking an action, update belief by sampling particles by
using simulation and keeping ones with true observation.

* Each node has visitation count, mean value and
particles.
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POMCP example

Silver&Veness, 2010
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Particle filter
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[

* Starting from current belief, ///% : // |
sample future.

* Calculate weights depending on ; i
observation probability. A,
_. - &
* Resample according to weights. Vl J | ‘ l
8 o oo e

,, Aalto University
School of Electrical

Engineering



Off-line vs on-line approaches

Off-line
* Plan for all beliefs
* High computational cost
* Fast online execution
* Significant
implementation effort

* Cannot handle changing
environment
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On-line

Plan for current belief
Lower computational cost
Slower online execution
Easier to implement

Can handle changing
environment



We didn’t cover

* Other on-line approaches available, e.g. DESPOT
(Somani et al., 2013).

* Current work towards combining off-line and on-line
approaches.

— E.g. using precomputed macro-actions.
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Summary

* Key to more efficient POMDP solutions is to consider
only parts of belief space.
— Off-line approaches sample over reachable beliefs.
— On-line approaches sample over currently reachable beliefs.

* Real-world problems are complicated and solutions
require approximations.
— Careful choices in modeling are important.
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observation z

environment state

E
S

reward r

action a

Challenges: data
efficiency/availability, sparse
rewards, long-term planning.

Practical applications limited.

Integration of various
approaches, such as

model-based RL,
policy search
value-based RL

planning/search
POMDPs.

Offline RL.
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