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Reinforcement Learning
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• Perform exploratory actions 𝑎"

• Observe
• the state 𝑠"
• the reward 𝑟"

• Compare accumulated rewrad with your 
expectation at state 𝑠"

𝑅" − 𝑉 (𝑠")

Accumulated reward Your expectation

• Better than expected? Reinforce the action



Deep Learning

cat

• High capacity models
• Highly diverse datasets
• Train end-to-end
• Powerful gradient-based opt.
• Powerful computations



Deep Learning

Puppies or Muffins?
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Reinforce the AnswerPrevent the Answer



Reinforcement Learning

Move the box to the target

𝑠" 𝑠"*+

𝑎"

𝑠",+

𝑎",+
… …

𝜏 = {𝑠0, 𝑎0, 𝑟0, … , 𝑠3,+, 𝑎3,+, 𝑟3,+}
Trajectory

𝜋6(𝑎"|𝑠")
Action-selection
policy
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Reinforcement Learning - Robotics

Calibration Visual perception Robustness

ExpertsDexterous manipulations Complex dynamics to model



Reinforcement Learning

Deep Q Learning AI playing Space Invaders
https://youtu.be/Qvco7ufsX_0

• Continuous score
• Reset after each trial
• Sufficient training data

https://youtu.be/Qvco7ufsX_0


Reinforcement Learning

4 Experiments Where the AI Outsmarted Its Creators
Two-minute papers 

• Move as fast as possible
• Minimize foot contacts with ground



Reward Shaping

• Puck final position
• Puck moves
• Blade tip to puck distance
• Collision with the table and self
• Energy consumption
• Hitting as fast as possible
• …



Machine Learning - Complexities

Time complexities
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• Binary Classification

• Classification

• Regression

• Multi-armed Bandit • Sequential Decision making



Reinforcement Learning - Challenges

• Sample efficiency
• Generalization
• Reward sparsity
• Credit assignment problem
• Safe exploration

DARPA robotic challenge

Move the box to the target



Learning Action-Selection Policies in Robotics

Today’s Lecture

• Behavior Cloning
• Feedforward Policy Training using VAE
• Guided Policy Search

• Meta-Learning
• Model-based RL
• Sim-to-real transfer learning
• Multi-objective RL

• Perception Training



Behavior Cloning

𝜋6(𝑎"|𝑠")

𝑠"

𝑎"

Training Dataset

Supervised
Learning

Open motion planning library

Motion Planning

s9*+ = As9 + Ba9
𝐽 = (𝑠3−𝑠∗)′𝑄(𝑠3−𝑠∗) +

∑"(𝑠"−𝑠∗)′𝑄(𝑠"−𝑠∗) + 𝑎"C𝑅𝑎"

Linear Quadratic Regulator

Optimal Control



Behavior Cloning - Challenges

Inconsistency of dataNon-stationarity of data distribution



Behavior Cloning – Today’s Lecture

• Variational Methods for Feedforward Policy Training 
• Guided Policy Search



Behavior Cloning – Variational Autoencoders

Deep predictive policy training using reinforcement learning
Ghadirzadeh, et al., IROS17.

𝜏 = {𝑢0, 𝑢+, … , 𝑢3,+, 𝑟3,+}
trajectory of actions

Training Dataset

• Teleoperation 
• Kinesthetic teaching
• Generic Motion Planners
• Optimal Control
• Blind controllers (trajectory shaping)

Latent Variable 
Generative Model 

Variational Autoencoder
𝑝 𝜏 𝛼)



Motor Trajectory 
Layers
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Auxiliary Encoder
Motor Actions

𝑢":"*3

Action-manifold 𝛼

Variational Auto-encoder

A blind controller in simulation

§ Sampling efficiently
§ Continuous mapping

Behavior Cloning – Feedforward Policy Training

Motor Actions
𝑢":"*3



Behavior Cloning – Feedforward Policy Training

Policy 
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𝜏 = {𝑜, 𝑢0, 𝑢+, … , 𝑢3,+, 𝑟3,+}
Feedforward trajectory

Deep predictive policy training using reinforcement learning
Ghadirzadeh, et al., IROS17.



𝑔(𝛼)𝜋6(𝛼|𝑜)

Policy 
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Environment

Motor Actions
𝑢":"*3

Sensory Observations
𝑜"

Terminal Reward
𝑟3*+

Efficient sampling due to low-dimensionality of 𝛼
Highly possible reward outcome
Safe exploration
No temporal credit assignment issue

Behavior Cloning – Feedforward Policy Training
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𝑢":"*3

Sensory 
Observations

𝑜"

Terminal Reward
𝑟3*+

E-step
§ Optimizes variational policy 

Variational 
Policy

Motor Trajectory 
Layers

M
O
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R

True state
𝑧"

Lower bound 
Cost averse

Trust region 

Behavior Cloning – Feedforward Policy Training



Policy 
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Layers

M
O
T
O
R

Perception Layers

S
E
N
S
O

R

Environment

Motor Actions
𝑢":"*3

Sensory 
Observations

𝑜"

Terminal Reward
𝑟3*+

M-step
§ Optimizes deep policy

Variational 
Policy

Motor Trajectory 
Layers

M
O
T
O
R

True state
𝑧"

Supervised learning

Behavior Cloning – Feedforward Policy Training



𝑞

1. Update 𝑞

2. Update 𝜋6
Cost averse term

Trust region term

𝜃

Input remapping trick

Behavior Cloning – Feedforward Policy Training



Update 𝑞 such that
𝔼N(O |P)[log 𝑝(𝑟|𝑧, 𝛼)]
is maximized

Reward probability 𝑝 𝑟 𝑧, 𝛼)

𝑧, 𝛼

𝑝 𝑟 𝑧, 𝛼)

Behavior Cloning – Feedforward Policy Training



1. Get initial 𝛼 by sampling 𝑞(𝛼|𝑧)

2. Find 𝛼∗ = 𝑎𝑟𝑔𝑚𝑎𝑥O log 𝑝(𝑟|𝛼, 𝑧)

3. Update 𝑞 to increase loglikelihood of {𝛼∗, 𝑧}
Training	Data

𝛼, 𝑧, 𝑟

Sample robot data 

Find 𝛼∗ by
Nelder-Mead
init 𝑞(𝛼|𝑧)

Update 𝑞(𝛼|𝑧)

Sample 𝛼
from 𝑞(𝛼|𝑧)

Update Reward
Function 
𝑝(𝑟|𝑧, 𝛼)
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Reward probability 𝑝 𝑟 𝑧, 𝛼)

Behavior Cloning – Feedforward Policy Training



Behavior Cloning – Feedforward Policy Training



Behavior Cloning

𝜋6(𝑎"|𝑠")

𝑠"

𝑎"

Training Dataset
x9*+ = Ax9 + Bu9
𝐽 = (𝑥3−𝑥∗)′𝑄(𝑥3−𝑥∗) +

∑"(𝑠"−𝑠∗)′𝑄(𝑠"−𝑠∗) + 𝑎"C𝑅𝑎"

Linear Quadratic Regulator

Optimal Control



Behavior Cloning – Guided Policy Search

min
b,6

𝐽 𝜏 𝑠. 𝑡. 𝑢" = 𝜋6(𝑥")

Finding the trajectory, 𝝉 = {𝒙𝟎, 𝒖𝟎, … , 𝒙𝑻,𝟏, 𝒖𝑻,𝟏}
and the policy 𝝅𝜽 such that the objective function 
is minimized

Can be solved by Dual Gradient Descent 

End-to-End Training of Deep Visuomotor Policies
Levine et al.



Dual Gradient Descent - Review

Goal min 𝑓 𝑥 𝑠. 𝑡. 𝐶 𝑥 = 0

• Construct the Lagrangian ℒ 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝐶(𝑥)
• Construct the dual Lagrange function 𝑔 𝜆 =
ℒ 𝑥∗, 𝜆

• Repeat the followings:
• Obtain 𝑥∗ ← argmin

s
ℒ 𝑥, 𝜆

• Compute tutv =
tℒ s∗,v

tv
• 𝜆 ← 𝜆 + 𝛼 tu

tv



min
b,6

𝐽 𝜏 𝑠. 𝑡. 𝑢" = 𝜋6(𝑥") ∀𝑡

min
b,6

𝐽 𝜏 𝑠. 𝑡. x
"

𝑢" − 𝜋6(𝑥") = 0

ℒ 𝜏, 𝜃, 𝜆 = 𝐽 𝜏 + 𝜆(x
"

𝑢" − 𝜋6(𝑥"))

Lagangian

𝜏v
∗, 𝜃v

∗ = argmin
by,6y

ℒ 𝜏C, 𝜃C, 𝜆

𝑔(𝜆) = ℒ(𝜏v
∗, 𝜃v

∗, 𝜆)

Lagrange Dual Function
𝑑𝑔 𝜆
𝑑𝜆

=
𝑑ℒ(𝜏v

∗, 𝜃v
∗, 𝜆)

𝑑𝜆

Behavior Cloning – Guided Policy Search

End-to-End Training of Deep Visuomotor Policies
Levine et al.



min
b,6

𝐽 𝜏 𝑠. 𝑡. 𝑢" = 𝜋6(𝑥") ∀𝑡

• Construct the Lagrangian ℒ 𝜏, 𝜃, 𝜆 = 𝐽 𝜏 + 𝜆(∑" 𝑢" − 𝜋6(𝑥"))

• Construct the dual Lagrange function 𝑔(𝜆) = ℒ(𝜏v
∗, 𝜃v

∗, 𝜆)
• Repeat

• 𝜏 ← argmin
by

ℒ(𝜏C, 𝜃, 𝜆)

• 𝜃 ← argmin
6y
ℒ(𝜏, 𝜃C, 𝜆)

• Compute tu
tv

• 𝜆 ← 𝜆 + 𝛼 tu
tv

𝐽(𝜏) = (𝑥3−𝑥∗)′𝑄(𝑥3−𝑥∗) + x
"

(𝑥"−𝑥∗)′𝑄(𝑥"−𝑥∗) + 𝑢"C𝑅𝑢"

Trajectory Optimization

Supervised Learning

Behavior Cloning – Guided Policy Search

End-to-End Training of Deep Visuomotor Policies
Levine et al.



Behavior Cloning – Guided Policy Search

End-to-End Training of Deep Visuomotor Policies
Levine et al.



Learning Action-Selection Policies in Robotics

Today’s Lecture

• Behavior Cloning
• Feedforward Policy Training using VAE
• Guided Policy Search

• Meta-Learning
• Model-based RL
• Sim-to-real transfer learning
• Multi-objective RL

• Perception Training



Meta-Learning Learn to Learn

cat

ImageNet 
pretrained 

model

Add some 
more layers

Collect training 
data (new task)

Fine-tune/train 
end-to-end

Task 1

Task 2

Task n

Meta-learner

Learner 1

Learner 2

Learner n



Meta-Learning Learn to Learn

Action-
selection Policy
(meta-policy)

Task1

Task2

Task3

Task4

Move Forward Slowly

Move Forward Fast

Move Backward Fast

Move Backward Slowly



Model-Agnostic Meta-Learning

Assuming K different tasks, the objective is:

where,



Meta-Learning Robust Model-Based RL

𝑠" 𝑠"*+

𝑎"

𝑠",+

𝑎",+
… …

𝑠"*+ = 𝑓(𝑠", 𝑎")
Forward Dynamic Model

Sample data
𝑠", 𝑎", 𝑠"*+

Fit Dynamic 
Model

𝑠"*+
= 𝑓(𝑠", 𝑎")

Update Policy
𝜋6(𝑎|𝑠)

model bias problem



Meta-Learning Robust Model-Based RL

𝑠" 𝑠"*+

𝑎"

𝑠",+

𝑎",+
… …

𝑠"*+ = 𝑓(𝑠", 𝑎")
Forward Dynamic Model

Sample data
𝑠", 𝑎", 𝑠"*+

Update 
Meta-Policy

𝑠"*+
= 𝑓+(𝑠", 𝑎")

𝑠"*+
= 𝑓{(𝑠", 𝑎")

𝑠"*+
= 𝑓|(𝑠", 𝑎")



• Sample data from the real environment using 
adapted policies 𝜋6}, 𝜋6~, … ,𝜋6�

• Update 𝑓�}, … , 𝑓��
• For every model 𝑓��

• Sample imaginary data using meta-policy 𝜋6
• Update 𝜋6�using the data, 𝜃�C = 𝜃 + 𝛼∇6𝐽� 𝜃
• Sample imaginary data from 𝑓�� using 𝜋6�y

• Update meta-policy with the imaginary data

Meta-Learning Robust Model-Based RL

Model-Based Reinforcement Learning via Meta-Policy Optimization
Clavera et al, 2018.  



Meta-Learning Robust Model-Based RL

Model-Based Reinforcement Learning via Meta-Policy Optimization
Clavera et al, 2018.  



Meta-Learning Sim-to-Real Transfer

• Discrepancies in system dynamics

• Differences in the robot controllers

• Different sources of noise and 
uncertainty



Meta-Learning Sim-to-real Transfer

meta-policy

Frictions set 1 
Contact set 1

Contrl param set 1

Frictions set 2 
Contact set 2

Contrl param set 2

Frictions set 3 
Contact set 3

Contrl param set 3

Frictions set n 
Contact set n

Contrl param set n

Policy 
Layers

Trajectory 
Layers

M
O
T
O
R

Perception 
Layers

S
E
N
S
O
R

Domain Randomization

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20



Meta-Learning Sim-to-Real Transfer

Before adaptation (meta-policy) After single adaptation

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20



Meta-Learning Sim-to-Real Transfer

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20



+ Stay upright
+ Forward speed
- Energy consumption
- Joint limit violation
- Collision

Meta-Learning Multi-Objective RL

𝑟 = 𝑓(∑𝜔� 𝑟�)



Meta-Learning Multi-Objective RL

Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19



Meta-Learning Multi-Objective RL

Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19



Meta-Learning Multi-Objective RL

Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19



Learning Action-Selection Policies in Robotics

Today’s Lecture

• Behavior Cloning
• Feedforward Policy Training using VAE
• Guided Policy Search

• Meta-Learning
• Model-based RL
• Sim-to-real transfer learning
• Multi-objective RL

• Perception Training
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Environment

Motor Actions
𝑢":"*3

Sensory 
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𝑜"

Terminal Reward
𝑟3*+

Variational 
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Motor Trajectory 
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True state
𝑧"

Perception Training



𝑞(𝛼|𝑧) 𝜋6(𝛼|𝑜)

𝜃

Input remapping trick



Perception Layers
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Auxiliary Decoder
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State Representation 𝑠"
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64 32 16 8

Perception Layer

Soft argmax features

𝑥+, 𝑦+
𝑥{, 𝑦{
…

𝑥�, 𝑦�

Perception Training



Perception Training

Policy 
Layers

Motor Trajectory 
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M
O
T
O
R

Perception Layers
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Environment

Motor Actions
𝑢":"*3

Sensory 
Observations

𝑜"

Terminal Reward
𝑟3*+

Variational 
Policy

Motor Trajectory 
Layers

M
O
T
O
R

True state
𝑧"

Object 
classifier

Task object 
presented?

Object 
detector Where is it?

Visual 
features



Perception Training

Singh et al., GPLAC
UC Berkeley



Perception Training

Devin et al., Deep object Centric Representations
UC Berkeley 



Perception Training Adversarial Training

Policy 
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Perception Training Adversarial Training

Policy 
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Perception Training Adversarial Training

Simple 
Perception

S
E
N
S
O
R

Perception

S
E
N
S
O
R

Discriminator

Chen, Ghadirzadeh, Bjorkman and Jensfelt


