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Reinforcement Learning

* Perform exploratory actions a; Observations

e Observe Im

* the state s; ‘ ,
* the reward r; ( )

* Compare accumulated rewrad with your » Environment
. (]
expectation at state s, » (Task)
o

Ry =V (s¢)

RN

Accumulated reward Your expectation

Actions

* Better than expected? Reinforce the action




Deep Learning

* High capacity models

* Highly diverse datasets

* Train end-to-end

e Powerful gradient-based opt.
e Powerful computations
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Deep Learning

Puppies or Muffins?
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Reinforcement Learning
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Move the box to the target

Trajectory
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Reinforcement Learning - Robotics

Robustness

Visual perception

&2

Calibration

Dexterous manipulations Experts




Reinforcement Learning

* Continuous score
* Reset after each trial
e Sufficient training data

Deep Q Learning Al playing Space Invaders
https://youtu.be/Qvco7ufsX O



https://youtu.be/Qvco7ufsX_0

Reinforcement Learning

Gt

* Move as fast as possible
* Minimize foot contacts with ground

4 Experiments Where the Al Outsmarted Its Creators
Two-minute papers




Reward Shaping

* Puck final position

* Puck moves

* Blade tip to puck distance

* Collision with the table and self
* Energy consumption

* Hitting as fast as possible

Wy, d? Wiog log (d? a)




Machine Learning - Complexities

Reward complexities

[

Multi-armed Bandit e Sequential Decision making

Regression
Classification

Binary Classification

v

Time complexities




Reinforcement Learning - Challenges

Move the box to the target

/-

* Sample efficiency

* Generalization

* Reward sparsity

* Credit assighment problem
e Safe exploration




Learning Action-Selection Policies in Robotics
Today’s Lecture

* Behavior Cloning
* Feedforward Policy Training using VAE
* Guided Policy Search

* Meta-Learning
* Model-based RL
* Sim-to-real transfer learning
* Multi-objective RL

* Perception Training




Behavior Cloning

Motion Planning

o % .
e |

Supervised
Learning

start

v

Open motion planning library

Optimal Control
St+1 = As; + Ba; g (at|st)
J = (s7=s")'Q(sy—s") +

2t(s¢—5")'Q(s¢—s") + aiRa,

Linear Quadratic Regulator




Behavior Cloning - Challenges

Non-stationarity of data distribution Inconsistency of data

Aalto University
School of Engineering




Behavior Cloning — Today’s Lecture

e Variational Methods for Feedforward Policy Training

* Guided Policy Search




Behavior Cloning — Variational Autoencoders

T = {Uo, Uy, ) Ur—1, 171}
trajectory of actions Variational Autoencoder

* Teleoperation p(rla)
* Kinesthetic teaching

e Generic Motion Planners

* Optimal Control

* Blind controllers (trajectory shaping)

Deep predictive policy training using reinforcement learning
Ghadirzadeh, et al., IROS17.




Behavior Cloning — Feedforward Policy Training

&

Motor Actions

&

Motor Actions

Uy
t:t+T Ut:t+T

f

¢(a|7_) Action-manifold @ 7 <— g(a)
N~
— Z 17 —
1=1

Varlat1onal Auto-encoder

Loae Zlﬂ g(ei)l + DrL(¥(ilm) [|N(0,1))

= Sampling efficiently

= Continuous mapping




Behavior Cloning — Feedforward Policy Training

log p(r|o) = 10g/p(r|0, T)me(T|0)dT

T — {0, Ug, U1, -, UT 1, TT—l}
Feedforward trajectory

Deep predictive policy training using reinforcement learning
Ghadirzadeh, et al., IROS17.




Behavior Cloning — Feedforward Policy Training

mg(alo) g(a)

Terminal Rewa

nsory Observations Motor Actions
Uy

log p(r|o) = log / p(r|o, 7)o (F|0)dr

‘ v’ Efficient sampling due to low-dimensionality of
v~ Highly possible reward outcome

log p(r|o) = log/p(r |0, g(a) )mg(a|o)da v Safe exploration

v~ No temporal credit assignment issue




Behavior Cloning — Feedforward Policy Training

E-step

= Optimizes variational policy

: q (alz)
—argmin "(ar]2) log ———— _da
1o | el S Halr, 0,0)

Terminal Reward Motor Actions

TT+1

Trust region

True state

— argmin{Dx 1 (¢ (a]2) || ma(afo))
q/

Observations

— Eqy(a)2) log p(r]a, o)}

Cost averse
Dk r(q(alz) || plalr,o,0))

log p(r|o. 0) Z/Q(a|z) log Mda®+/€l(a|z) lo _p(q . da.@

q(al2) alr,o,0)

Lower bound




Behavior Cloning — Feedforward Policy Training

M-step

= Optimizes deep policy

p(r,alo,0")
q(lz)

do

Motor Actions 0/ = argmax / q(a|2) log
. 9/

Terminal Reward
TT+1

True state

= aremin Dk r(q(al2) || mgr (a]o))

Observations

Supervised learning

log p(r|o,8) = / g(a?) log "'(O‘:O)Q) MOMN / log%da.@




Behavior Cloning — Feedforward Policy Training

Trust region term
1. Update g /

q =argmin{ D (¢ (a|z) || m(]0))
q’

— Eq(al2) log p(r|a, 0)]}

Input remapping trick Cost averse term

2. Update mg

0 — al‘glllill DKL((](@ | o (O" 0))
6/




Behavior Cloning — Feedforward Policy Training

Update g such that

Eq(a|n[logp(r|z, )]
is maximized

Reward probability p(r|z, a)




Behavior Cloning — Feedforward Policy Training

Sample robot data

= 1. Get initial a by sampling g(a|z)

2. Find a® = argmax,logp(r|a, z)

Next Iteration

— 3. Update q to increase loglikelihood of {a", z}

Reward probability p(r|z, a)




Behavior Cloning — Feedforward Policy Training




Behavior Cloning
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Behavior Cloning — Guided Policy Search

m%n J(t)  s.t. Uy = mo(x;)
T,

Finding the trajectory, T = {xo, ug, ..., X7_1, Ur_1}
and the policy 1Ty such that the objective function
is minimized

Can be solved by Dual Gradient Descent

End-to-End Training of Deep Visuomotor Policies
Levine et al.




Dual Gradient Descent - Review

Goal minf(x) s.t. C(x)=0

* Construct the Lagrangian L(x,1) = f(x) + AC(x)

* Construct the dual Lagrange function g(4) =
L(x*, 1)

* Repeat the followings:

* Obtain x* < argmin L(x, 1)
dg  dL(x*2)
di,  dA

. a9
A+A+am

* Compute




Behavior Cloning — Guided Policy Search

mgn](r) s.t. ur =mg(x;) Vt
T,

rg%n](r) s.t. z ur —mg(x;) =0

t

L(1,0,1) =](1) + A(z u; —mg(x;)) 13,0, =arg yrrlliOr} L(t',0',1)
- ,

\ g(A) = L(ty,0;, 1)
"

Lagangian g(/l) . dL(T;, H)T; A)
dl dA

Lagrange Dual Function

End-to-End Training of Deep Visuomotor Policies
Levine et al.




Behavior Cloning — Guided Policy Search
ryflign](r) s.t. ur =mg(xy) Vt

J@) = (=2 Qar=2") + ) (r=x") Q=) + uiRu,
t

e Construct the Lagrangian £(z,0,2) = J(©) + A ur — o ()
* Construct the dual Lagrange function g(4) = L(ty, 65, 1)

* Repeat
* T« arg mi,n L(t',0,1) Trajectory Optimization
‘ Supervised Learning

* 6 «argminL(7,60',1)

. a9
Compute ')

. ag
Ael+aﬂ

End-to-End Training of Deep Visuomotor Policies
Levine et al.




Behavior Cloning — Guided Policy Search

Hl' ; ‘

End-to-End Training of Deep Visuomotor Policies
Levine et al.




Learning Action-Selection Policies in Robotics
Today’s Lecture

* Behavior Cloning
* Feedforward Policy Training using VAE
* Guided Policy Search

* Meta-Learning
* Model-based RL
* Sim-to-real transfer learning
* Multi-objective RL

* Perception Training




Meta-Learning Learn to Learn

ImageNet
pretrained
model

Add some Collect training Fine-tune/train
more layers data (new task) end-to-end

Learner 1 Task 1
Meta-learner ( )
Learner 2 Task 2

Learner n [ Task n ]

Aalto University
School of Engineering




Meta-Learning Learn to Learn

)

Task1 Move Forward Slowly
A\
Task2 Move Forward Fast
Action- )
selection Policy N
meta-polic
( policy) Task3
Move Backward Fast
J
Taska -

Move Backward Slowly




Model-Agnostic Meta-Learning

Assuming K different tasks, the objective is:
1 K
max > Jk(6;) st 0;,=60+a VeJip(0)
k=0

where,

H—-1
Jk (0) — Eatfwre(atlst) [

t

I
o




Meta-Learning Robust Model-Based RL

@ @ Forward Dynamic Model
Se+1 = f (St ar)
G, s, @ t+ t "t

Sample data

St, Aty St+1

Fit Dynamic
Update Policy ) Model
Ty (a|s) St+1

= f(str at)

model bias problem




Meta-Learning Robust Model-Based RL

@ @ Forward Dynamic Model
St+1 = f (S, ar)
»St_1 St @ *

Sample data

St, Aty St+1

St+1

= f2(se,ar)

Update
Meta-Policy

H-1

Jk(e) — atwwg(at|st) [ Z r Staat

t=0

St+1 = fqbk (8¢, a¢)




Meta-Learning Robust Model-Based RL

e Sample data from the real environment using
adapted policies g _, g, ... ,Tg

e Update f¢1, ""f(l)k

* For every model f4.
* Sample imaginary data using meta-policy g
* Update mg using the data, 8; = 6 + aVy/;(0)
* Sample imaginary data from f. using To!

k

* Update meta-policy with the imaginary data
0 —6—05 %>, Voli(6y)

Model-Based Reinforcement Learning via Meta-Policy Optimization
Clavera et al, 2018.




Average return

Average return

Meta-Learning Robust Model-Based RL
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Model-Based Reinforcement Learning via Meta-Policy Optimization
Clavera et al, 2018.




Meta-Learning Sim-to-Real Transfer

Discrepancies in system dynamics

e Differences in the robot controllers = IF
‘ /

* Different sources of noise and
uncertainty




Meta-Learning Sim-to-real Transfer

. M
E
_ ; , 0
: Perception Policy Trajectory | _ Frictions set 1
Layers Layers Layers 0
: - Contact set 1
- Contrl param set 1

Frictions set 2
Contact set 2
Contrl param set 2

meta-policy

Frictions set 3
Contact set 3
Contrl param set 3

Frictions set n
Contact set n
Contrl param set n

Domain Randomization

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20



Meta-Learning Sim-to-Real Transfer

Before adaptation (meta-policy) After single adaptation

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20




Meta-Learning Sim-to-Real Transfer

FakeHockey-v0
env

Arndt, Ghadirzadeh, Hazara, Kyrki
ICRA20




Meta-Learning Multi-Objective RL

+ Stay upright

+ Forward speed

- Energy consumption
- Joint limit violation
- Collision

r=fQw;n)




Meta-Learning Multi-Objective RL

Humanoid force (@ @
-0
Scalarized Retumns -—
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Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19




Meta-Learning Multi-Objective RL

Scalarized retums of Reacher using 30 random weight vectors nanch
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Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19




Meta-Learning Multi-Objective RL

Reacher LunarLanderContinuous
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Fig. 4: The improvements of the hypervolume indicator (vertical axis) with respect to the iteration of fine-tuning the meta

policy (horizontal axis). The blue curve denotes the hypervolume and the red line denotes the final hypervolume of the
Pareto front estimated by RA.

Meta-Learning for Multi-objective Reinforcement Learning
Chen, Ghadirzadeh, Bjorkman and Jensfelt, IROS19




Learning Action-Selection Policies in Robotics
Today’s Lecture

* Behavior Cloning
* Feedforward Policy Training using VAE
* Guided Policy Search

* Meta-Learning
* Model-based RL
* Sim-to-real transfer learning
* Multi-objective RL

* Perception Training




Perception Training

Terminal Reward Motor Actions

True state
Zt

= A

Aalto University
School of Engineering




Input remapping trick

q(a|z) g (a]o)
6 = argellnin Dy (q(al2) || 7o (a]o))




Perception Training

- [
!

State Representation St Perc eption Layer




Perception Training

Where is it?

Task object
presented?

| Ly =Dgr(q(alz)|[mg(alo))
Terminal Reward Motor Actions

TT41 e Edet - Z Z Z _]I'L?p log fdet(o, C7p)

i€obj c€Ecls pEpos

['loc — Z Z Z ]pr | floc(oa Cap) — Di |

i€obj c€Ecls pEpos

True state

Observations

H = argmaX{ﬁM + £loc + 'Cdet}
6/




Perception Training

Object
present?
ECF

feature
points

Robot

action
[rt ask
a %

feature
points

I L conv1 conv2 conv5 spatial Un'

softmax angles

Singh et al., GPLAC
UC Berkeley




Perception Training

Robot State
EEEEEEE oo Learning w from trajector
attention w earning wirom trajectories
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Devin et al., Deep object Centric Representations
UC Berkeley




Perception Training Adversarial Training
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Perception Training Adversarial Training
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Perception Training Adversarial Training

».
==

Simple
Perception

Discriminator

]
» Perception »

Chen, Ghadirzadeh, Bjorkman and Jensfelt
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