
Simulation demonstration of regression assumptions
This example answer is compiled from an R Markdown document. Markdown is a simple formatting
syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see
http://rmarkdown.rstudio.com.

I demonstrate the effects of violations of each of the classical linear model assumptions on OLS regression using
Monte Carlo simulations. (MLR.1-MLR.6, see Wooldridge, 2009, pp. 157–158). A monte Carlo Simulation
runs a function that generates random data sample from a model and calculates a statistic from the data.
This is repeated multiple times to see the behavior of the statistic over replications.

In this example, I will generate data based on a number of population models and always estimate the
following regression model:

y = β0 + β1x1 + β2x2 + β3x3 + ε

All independent variables are standardized (mean = 0, SD = 1) and correlated at 0.3 in the population, andI
construct different populations by modifying the functional form and the error distribution to get different
population models. The population variance of the fitted values is 4.8 and the variance of the error term is in
most casea about 25 (SD = 5), which means that the population Rˆ2 is about 16%

I use each population model to generate 10000 samples of data and use each sample to estimate the model.
The sample size (N) is 100. Then I collect the estimates and standard errors for β1 and analyze bias of these
statistics. The OLS estimates of β1 are unbiased if the mean estimate equals the population value, which
in these scenarios is always 1. The standard errors are unbiased if the mean standard error is equal to the
standard deviation of the estimates. (Recall that the standard error is an estimate of the standard deviation
of the estimates over repeated samples.) I also plot the distribution of both the estimates and standard errors
and compare with the normal distrbution. Normality is important because the t-test that are used for null
hypothesis significance testing assume normality and may give incorrect results if this assumption is violated.
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MLR.1 Linear in parameters

This assumption is about correct model specification. A good way to diagnose this is the residuals versus
fitted plot and added variable plots (also known as partial regression plots.)

In the table below th n()-function provides the standard normal distribution.

Population.model Est.mean Est.SD SE.mean Est.density SE.density

1 y = x1 + x2 + x3 + 5*n(N) 0.994 0.553 0.550 −1 0 1 2 3 0.3 0.5 0.7

2 y = x1ˆ2 + x2 + x3 + 5*n(N) 0.006 0.639 0.570 −2 0 1 2 3 0.4 0.6 0.8

3 y = x1 + x2ˆ2 + x3 + 5*n(N) 1.000 0.571 0.571 −1 0 1 2 3 0.4 0.6 0.8

4 y = x1 + x2 + x1 * x2 + x3 + 5*n(N) 1.009 0.579 0.561 −1 1 2 3 4 0.4 0.6 0.8

Model 1 is a model where all assumptions hold. Both estimates and standard errors are unbiased and
normal. Model 2 includes a quadratic function of x1 and results in biased relationship. Model 3 includes
a quadratic function of x2, but this does not affect the estimates of x1, which remain unbiased. Model 4
contains an unmodeled interaction term. This causes the standard errors to become biased but does not bias
the estimates.

Functional form misspecification can therefore affect the biasedness of both estimates and standard errors,
but mispecification of one functional form does not necessarily affect the estimates of other relationships.
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MLR.2 Random sampling

The assumption MLR.2 can fail in at least two important ways: non-representative sample or clustered
observations.

Wooldridge discusses the representativeness of the sample and mentions two mechanisms of how this can
arise (Wooldridge, 2009, sec. 9.5). First, it is possible that data on some variables are missing in a systematic
way, which will influence the results. Second, it is possible that the sample is selected in a particular way.
This links also to Antonakis’ discussion on omitted selection.

Clustering of observations refers to scenarios where the observations are grouped in some way. We discuss
this kind of designs more during the 5th lecture. Clustering of the data leads to violations of the assumption
of independent and identically distributed (iid) error term, which may lead to biased standard errors and
non-normal distribution of the parameter estimates (Wooldridge 2009, p. 457). What independent and
identically distributed means is best understood by examining cases where it fails, which we will do during
lecture 5.

Population.model Est.mean Est.SD SE.mean Est.density SE.density

5 y = x1 + x2 + x3 + 5*n(N) 0.997 0.550 0.550 −1 0 1 2 3 0.4 0.6 0.8

6 y = x1 + x2 + x3 + 5*n(5) 1.000 0.493 0.464 −2 0 2 4 0.0 0.5 1.0 1.5

7 y = x1 + x2 + x3 + 5*n(N),y>0 0.397 0.513 0.512 −1 0 1 2 0.2 0.6 1.0

The first model (5) is again a model where all assumptions hold. Model 6 represents and extreme case of
clustered error term. In this scenario, the errors are normally distributed in the population, but the data
are clustered as 5 groups of 20 and all observations in a cluster have the same error term value. In other
words, the error term is perfectly correlated within clusters. This is implemented by generating just 5 random
normal variables, which are then recycled so that each is used as error term for 20 observations. In this
sceanario the estimates remain unbiased because the error term is still uncorrelated with the dependent
variables. The distribution of the estimates is slightly more peaked tahn the normal dsitribution and teh
standard errors are skewed and biased negatively.

Model 6 shows the effects of selection effect. If our data is not a random sample, but selected based on the
dependent variable such that only observations with positive value of y are included in the analysis, estimates
will be have a large negative bias. The direction of this bias depends on how the data are selected.
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MLR.3 No perfect collinearity

If any of the independent variables are perfectly collinear, the regression model cannot even be estimated.
Note that perfect collinearity does not require that two of the independent variables are perfectly correlated.
For example, if two independent variables, x1 and x2 are uncorrelated and have same standard errors, then
defining x3 = x1 + x2 and using x3 as independent variable in regression with x1 and x2 would lead to
perfect collinearity. However, the correlation between x1 and x3 would only be about 0.7.

This can be easily demonstrated with just one sample.

x1 <- n(N)
x2 <- n(N)
x3 <- x1 + x2

y <- x1 + x2 + x3 + n(N)

summary(lm(y ~ x1 + x2 + x3))

##
## Call:
## lm(formula = y ~ x1 + x2 + x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98104 -0.71287 -0.04034 0.64446 2.38611
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.11637 0.09957 -1.169 0.245
## x1 1.88685 0.11656 16.188 <2e-16 ***
## x2 2.13567 0.11068 19.296 <2e-16 ***
## x3 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9931 on 97 degrees of freedom
## Multiple R-squared: 0.8787, Adjusted R-squared: 0.8762
## F-statistic: 351.2 on 2 and 97 DF, p-value: < 2.2e-16
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MLR.4 Zero conditional mean

This is the no endogeneity assumption because it implies the error is uncorrelated with all independent
variables. This becomes more clear if you look at the MLR.4’ (Wooldridge, 2009, p. 169) assumption, which is
a weaker form of this assumption. Unfortunately, there is no general test of this assumption. However, there
are specific mechanism that can lead to violation of his assumption and these mechanisms can be tested.

Population.model Est.mean Est.SD SE.mean Est.density SE.density

8 y = x1 + x2 + x3 + 5*n(N) 0.988 0.549 0.550 −1 0 1 2 3 0.4 0.6 0.8

9 y = x1 + x2 + x3 + x4 + 5*n(N) 1.192 0.556 0.558 −1 0 1 2 3 0.3 0.5 0.7 0.9

10 y = x1 + x2 + x3 + (5*n(N)+x1) 1.989 0.555 0.550 0 1 2 3 4 0.4 0.6 0.8

11 y = x1 + x2 + x3 + (5*n(N)+x4) 1.182 0.566 0.559 −1 0 1 2 3 0.4 0.6 0.8

The first model (8) is again a model where all assumptions hold. In Model 9 the population contains a fourth
variable, x4, which correlates with x1, x2, and x3 at 0.3. Because x4 has an effect on the dependent variable
and it is correlated with the other independent variables, it should be included in the model as a control.
Because the variable is omitted, the effects of x4 are attributed to other independent variables causing a
positive bias. Model 10 and Model 11 represent scenarios where the error term correlates with x1 and x4
respectively. This endogeneity causes positive bias in the parameter estimates.
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MLR.5 Homoskedasticity

Failure of this assumption lead to inefficient estimation and more importantly biased standard errors.

Population.model Est.mean Est.SD SE.mean Est.density SE.density

12 y = x1 + x2 + x3 + 5*n(N) 1.003 0.552 0.550 −1 0 1 2 3 0.4 0.6 0.8

13 y = x1 + x2 + x3 + 5*x1*n(N) 0.988 0.881 0.538 −2 0 2 4 6 0.3 0.5 0.7 0.9

14 y = x1 + x2 + x3 + 2.2*(x1+2)*n(N) 1.004 0.614 0.538 −2 0 1 2 3 0.3 0.5 0.7

15 y = x1 + x2 + x3 + ((x1+10)/2)*n(N) 0.996 0.562 0.553 −1 0 1 2 3 0.4 0.6 0.8

16 y = x1 + x2 + x3 + 5*x2*n(N) 0.998 0.550 0.541 −1 0 1 2 3 0.4 0.8

The first model (12) is again a model where all assumptions hold and the rest have various heteroskedasticity
problems. To make the nature of these problems more clear, I have plotted the values of the error term over
the values of x1 for a sample of 1000 for all five models.
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In all cases the estiametes remain unbiased and normal, which is expected because heteroskedasticity affects
only efficiency (the standard deviation of the estimates) and bias of standard errors. Model 13 has severe
heteroskedasticity problem in the form of butterfly shaped residuals and has the most biased SEs. Model 14
has cone shaped residuals which bias SEs, but not as severely. The heteroskedasticity problems in Model 15
and Model 16 are barely noticeable with plain eye, and also biase the SEs only little.

7



MLR.6 Normality

The normality of the error term assumption is required for the t-test for the path coefficients and F-test for
the full model to produce correct results.

Population.model Est.mean Est.SD SE.mean Est.density SE.density

17 y = x1 + x2 + x3 + 5*n(N) 0.996 0.558 0.550 −1 0 1 2 3 0.4 0.6 0.8

18 y = x1 + x2 + x3 + 8*abs(n(N)) 1.001 0.535 0.529 −1 0 1 2 3 0.3 0.5 0.7

19 y = x1 + x2 + x3 + 17*runif(N) 0.997 0.546 0.541 −1 0 1 2 3 0.4 0.6 0.8

20 y = x1 + x2 + x3 + 3.5*n(N)ˆ2 1.004 0.552 0.537 −1 0 1 2 3 0.2 0.6 1.0

21 y = x1 + x2 + x3 + 1.5*rchisq(N,df=5) 0.992 0.515 0.520 −1 0 1 2 3 0.3 0.5 0.7 0.9

The first model (17) is again a model where all assumptions hold. To quantify the degree of non- normality,
I have plotted the distributions of the five error terms below using a sample size of 100000 to draw the
distribution. (All of these have known propability density functions, but doing actual samples is a bit easier
to do than to draw the known distributions.)
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Again, in all models the estimates are unbiased. The standard errors are clearly biassed down for Model 20,
which has extremely skewed error distribution. SEs of other models are unbiased or at least close to unbiased.
Indeed, when sample size increases the normality assumption becomes less important. Wooldridge notes that
as sample size and adds that “Some econometricians think that n = 30 is satisfactory, but this cannot be
sufficient for all possible distributions of u.” (Wooldridge, 2009, p. 175) Lack of normality is not necessarily a
big problem with the sample sizes typical for management research.
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