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Response variable and explanatory variables

Variation in a response variable Y is explained by variation
in explanatory variables X1, ...,Xk .

y1, ..., yn are the observed values of the response variable
Y .
x1j , ..., xnj are the observed values of the explanatory
variable Xj .
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Definition

Multiple linear model is given by

Yi = β0 + β1Xi1 + ...+ βk Xik + εi , i = 1, ...,n,

where
The variables Yi are random and the variables Xi1, ...,Xik
are non-random.
The residual (error term) εi are random.
The coefficients (regression parameters) β0, β1, ..., βk are
constants.

Remark
For simplicity, we assumed that the variables Xi1, ...,Xik are
non-random. Then all the randomness of Yi comes from the
residual εi .
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Linear model

Remark
Conventional notation

yi = β0 + β1xi1 + ...+ βkxik + εi , i = 1, ...,n,

is used even though some of the variables are random and
some are not.
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Standard assumptions

yi = β0 + β1xi1 + ...+ βkxik + εi , i = 1, ...,n,

(i) The explanatory variables are non-random.
(ii) The explanatory variables are linearly independent.
(iii) E[εi ] = 0 for all i = 1, ...,n
(iv) var(εi) = σ2 for all i = 1, ...,n
(v) cor(εi , εl) = 0, for i 6= l

Remark
In addition to the standard assumptions, it is customary to
assume that the residuals are independent and identically
distributed. Moreover, it is often assumed that the residuals are
normally distributed, but this is not a necessary assumption.

MS-C2128 Prediction and Time Series Analysis Linear model



Response variable and explanatory variable

160 165 170 175 180 185

40
50

60
70

Height and weight of adolescents

Height (cm)

W
ei

gh
t (

kg
)

MS-C2128 Prediction and Time Series Analysis Linear model



Standard assumption (i)

(i) The variables Xj are non-random.

This is a strong assumption.
However, linear regression analysis works perfectly well
also in the case when the variables Xj are assumed to be
random. In that case, the notations are a bit more
complicated. (One has to consider conditional expected
values instead of expected values.) Estimation procedures
are exactly the same in the case when the Xj are assumed
to be non-random and in the case when the Xj are
assumed to be random.
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Standard assumptions (ii) and (iii):

(ii) The explanatory variables are linearly independent.

Multicollinearity makes it difficult to assess the effect of the
different explanatory variables separately.
If Xj can be given as a linear combination of the other
explanatory variables, it can be removed from the model.
Assumption (ii) guarantees that the so called least square
estimators for the parameters β0, β1, ..., βk can be given in
closed form.

(iii) E[εi ] = 0 for all i = 1, ...,n.

Assumption (ii) guarantees that there is no systematic
bias. That is,

E[yi ] = E
[
β0 + β1xi1 + ...+ βkxik + εi

]
= β0 + β1xi1 + ...+ βkxik + E

[
εi
]

= β0 + β1xi1 + ...+ βkxik .
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Standard assumption (iv):

(iv) var(εi) = σ2 for all i 6= l .

The parameter σ2 is called the residual variance.
If Assumption (iv) holds, the residuals εi are said to be
homoscedastic.
If Assumption (iv) does not hold, the residuals εi are said to
be heteroscedastic.
Heteroscedasticity makes standard least squares
estimators unstable.

In the presence of heteroscedasticity one could apply the
so called generalized least squares estimators. (This is
beyond the scope of this course.)

Homoscedasticity can be tested. (See Week 2, regression
diagnostics.)
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Standard assumption (v):

(v) cor(εi , εl) = 0 for all i = 1, ...,n.

The residuals are uncorrelated.
If Assumption (v) does not hold, the residuals εi are
correlated.
Correlatedness can make the regression parameter
estimators inefficient and even biased.

In the presence of correlated residuals, one could apply
dynamic regression models.

Uncorrelatedness can be tested. (See Week 2, regression
diagnostics.)
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Linear model

yi = β0 + β1xi1 + ...+ βk xik + εi , i = 1, ...,n,

If Assumptions (i)-(vi) hold, then
(iii)’ E[yi ] = β0 + β1xi1 + ...+ βkxik , i = 1, ...,n
(iv)’ var(yi) = σ2, i = 1, ...,n
(v)’ cor(yi , yj) = 0, i 6= l

Remark
If the residuals are assumed to be normally distributed, then

yi ∼ N
(

E[yi ], σ
2), i = 1, ...,n.
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Model part and random part

yi = β0 + β1xi1 + ...+ βk xik + εi , i = 1, ...,n,

Linear model can be given as a sum of two parts:

yi = E[yi ] + εi , i = 1, ...,n

The expected value E[yi ] = β0 + β1xi1 + β2xi2 + ...+ βk xik is
called the systematic part or the model part. This part
depends on the xj .
The residual εi forms the random part. This part is
independent of xj .
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Regression plane and regression parameters

The systematic part E[yi ] defines the regression plane

y = β0 + β1x1 + ...+ βkxk

in Rk+1.
The variance σ2 measures the variation of
(xi1, ..., xik , yi ) ∈ Rk+1 around the regression plane.

The regression parameters βj can be interpreted as
follows:

Assume that the value of the explanatory variable xj grows
by one (xj −→ xj + 1) and assume that the values of all the
other explanatory variables remain unchanged. The
parameter βj models the change in the expected value of
the response variable y as the value of xj changes by one
unit:

E[y ] −→ E[y ] + βj .
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Matrix representation

A linear model can be represented as y = Xβ + ε, where

y = (y1, y2, ..., yn)> =


y1
y2
...

yn

 β = (β0, ..., βk )> =


β0
β1
...
βk



X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk

 ε = (ε1, ..., εn)> =


ε1
ε2
...
εn


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Standard assumptions: Matrix representation

A linear model can be represented as y = Xβ + ε

(i) The elements of X are non-random.
(ii) The columns of X are linearly independent.
(iii) E[ε] = 0.

(iv)-(v) cov(ε) = σ2I .
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Remark

Let z = (z1, z2, ..., zp)> be a random vector, where the
elements z1, z2, ..., zp are random.
The expected value µ = E[z] of a vector z is taken
componentwise

µ = E[z] =
(

E[z1],E[z2], ...,E[zp]
)> ∈ Rp

The covariance Σ = cov(z) of z refers to the matrix

Σ = cov(z) = E
[
(z − E[z])(z − E[z])>

]

=


var(z1) cov(z1, z2) cov(z1, z3) · · · cov(z1, zp)

cov(z2, z1) var(z2) cov(z2, z3) · · · cov(z2, zp)
...

...
...

. . .
...

cov(zp, z1) cov(zp, z2) cov(zp, z3) · · · var(zp)

 ∈ Rp×p
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Least squares estimation

yi = β0 + β1xi1 + ...+ βk xik + εi , i = 1, ...,n,

The parameters β0, β1, ..., βk are usually estimated using the
least squares estimation method:

The sum of the squared residuals
n∑

i=1

ε2i =
n∑

i=1

(
yi − β0 − β1xi1 − ...− βk xik

)2

is minimized with respect to the parameters β0, β1, ..., βk :
The partial derivatives with respect to β0, β1, ..., βk are
calculated.
k + 1 equations are obtained by setting the derivatives
equal to zero.
If the explanatory variable matrix X is of full rank, there
exist a unique solution.
The least squares estimators bj for βj are obtained.
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Estimator vs estimate

The random object bj is called an estimator.
If we calculate the numerical value for bj from an
observed sample, we obtain an estimate, that is a
non-random realization of the corresponding estimator.

Remark
An estimator and the corresponding estimate are often denoted
by the same symbol. The interpretation depends on the context.
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Least squares estimator

Let y = Xβ + ε and let the matrix X be of full rank. Then
the least squares estimator of β is

b = (b0, ...,bk )> =
(
X>X

)−1X>y .

If the standard assumptions (i)-(v) hold, then

E[b] = β and cov(b) = σ2(X>X
)−1

.

As the expected value E[b] = β, the least squares
estimator b is an unbiased estimator of β.

If the residuals are normally distributed, then

b ∼ Nk+1

(
β, σ2(X>X

)−1
)
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Fitted values and residuals

The fitted values of the estimated model are given as
follows:

ŷi = b0 + b1xi1 + ...+ bkxik

This gives the estimated values of the response variable y
in points i .

The estimated residuals:

ei = yi − ŷi = yi − b0 − b1xi1 − ...− bkxik

The residuals are the differences between the observed
values of the response variables and the estimated values
of the response variables.

The model explains the variation in y the better the smaller
are the estimated residuals ei .
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Fitted values and residuals
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Fitted values and residuals

Under the standard assumptions (i)-(v), we have that:
For the fitted values:

ŷ = Xb = X
(
X>X

)−1X>y = Py
E[ŷ ] = Xβ

cov(ŷ) = σ2X
(
X>X

)−1X> = σ2P.

For the residuals:

e = y − ŷ =
(

I − X
(
X>X

)−1X>
)

y =
(
I − P

)
y = My

E[e] = 0

cov(e) = σ2
(

I − X
(
X>X

)−1X>
)

= σ2(I − P
)

= σ2M .
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Fitted values and residuals

The n × n-matrices

P = X
(
X>X

)−1X>

M = I − P = I − X
(
X>X

)−1X>

are symmetric ja idempotent:

P> = P P2 = P

M> = M M2 = M

Moreover: PM = MP = 0
The above mentioned properties of the matrices P and M
play a crucial role when distributions related to estimating
and testing the linear regression parameters are derived.
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Residual variance

If the standard assumptions (i)-(v) hold, then an unbiased
estimator for var(εi) = σ2 can be given as

s2 =
1

n − k − 1

n∑
i=1

e2
i ,

where ei = yi − ŷi , k is the number of the explanatory
variables and where n is the number of the observations.
This is actually simply the sample variance of the ei as
there are k + 1 estimated parameters and as

n∑
i=1

ei = 0 =⇒ ē =
1
n

n∑
i=1

ei = 0 and

s2 =
1

n − k − 1

n∑
i=1

(
ei − ē

)2
=

1
n − k − 1

n∑
i=1

e2
i
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Variance decomposition

The goal in regression analysis is to explain the variation in the
response variable by the variation in the explanatory variables.
Success in this can be assessed using the so called variance
decomposition.
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Variance decomposition: Definition

The total sum of squares SST =
∑n

i=1(yi − ȳ)2

measures the variation of the observations yi
the sample variance of the yi , s2

y = SST/(n − 1)

The error sum of squares SSE =
∑n

i=1 e2
i

measures the variation of the estimated residuals ei
the sample variance of the ei , s2 = SSE/(n − k − 1)

The model sum of squares SSM =
∑n

i=1(ŷi − ȳ)2

measures the part of the variation of the observations yi
that is explained by the estimated regression model.

The variance decomposition: SST = SSM + SSE
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Coefficient of determination: Definition

The variance decomposition SST = SSM + SSE tells
about the goodness of the estimated regression model.

The larger the proportion of the model sum of squares
SSM (that is, the smaller the proportion of the error sum of
squares SSE) is of the total sum of squares SST , the better
the estimated model explains the variation in the response
variable.

This motivates the use of the coefficient of determination

R2 = 1− SSE
SST

=
SSM
SST

∈ [0,1]

as a measure of goodness of a regression model.
The coefficient of determination measures the proportion of
the variance in the response variable that is predictable
from the explanatory variables.
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Coefficient of determination: Properties

R2 = 1− SSE
SST

=
SSM
SST

∈ [0,1]

The following conditions are equivalent:
1 R2 = 1.
2 ei = 0 for all i = 1,2, ...,n.
3 all the observed (xi1, xi2, ..., xik , yi ) lie on the same plane in

Rk+1.
4 ”The model explains the variation in the response variable

perfectly.”
The following conditions are equivalent:

1 R2 = 0.
2 b1 = b2 = ... = bk = 0.
3 ”The model does not explain the variation in the response

variable at all.”
The coefficient of determination is equal to the square of
the sample Pearson correlation coefficient of the observed
values yi and the fitted values ŷi .
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Significance testing

Let the standard assumptions (i-v) hold. Now, the expected
value and the covariance matrix of the least squares estimator
b are

E[b] = β = (β0, β1, ..., βk )

D2(b) = σ2(X>X )−1.

An unbiased estimator for the covariance matrix D2(b) is

D̂2(b) = s2(X>X )−1

where s2 is the unbiased estimator of the residual variance σ2,

s2 =
1

n − k − 1

n∑
i=1

e2
i .
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Significance testing

The coefficient of determination measures how big part of
the variation in the response variable is explained by the
estimated regression model. However, it does not tell
whether the coefficient of determination differs significantly
from zero or not.
The significance of the coefficient of determination can be
tested by examining how likely it is to obtain as large value
as was obtained, under the assumption that the residuals
explain all of the variation in the response variable.
Note that if the residuals explain all of the variation in the
response variable, then βj = 0 for all j = 1, ..., k .
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Significance testing

The significance of the coefficient of determination can be
tested by applying the permutation test as follows:

1 The null hypothesis is H0 : βj = 0 for all j = 1, ..., k and the
alternative hypothesis is H1 : βj 6= 0 for at least one j .

2 Calculate the value R2 from the original observations
(yi ,xi), xi = (xi1, ..., xik ).

3 Form n new pairs (yi ,xl), such that each original
explanatory variable vector xl (and each original response
variables yi ) is used exactly once in the new sample.
Construct all the possible n! permuted samples.

4 For each sample p, calculate the corresponding coefficient
of determination, R2

p . You obtain n! values.
5 Order the values R2

p from the smallest to the largest and
calculate the empirical (1− α) · 100th percentile from the
sample. If the original R2 is larger than the calculated
percentile, the coefficient of determination is considered
significant on level α.
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Significance of one single regression parameter

Permutation test can be applied also in testing the significance
of one single regression parameter βj .

1 The null hypothesis is H0 : βj = 0 and the alternative
hypothesis is H1 : βj 6= 0.

2 Calculate the value R2 from the original observations
(yi ,xi), xi = (xi1, ..., xik ).

3 Pair each yi with the original xi = (xi1, ..., xik ), i = 1, ...,n,
but permute the components (and only the components) x·j
that correspond to the parameter βj . You can construct n!
permuted samples. Each sample size is n.

4 For each sample p, calculate the corresponding coefficient
of determination, R2

p . You obtain n! values.
5 Order the values R2

p from the smallest to the largest and
calculate the empirical (1− α) · 100th percentile from the
sample. If the original R2 is larger than the calculated
percentile, the null hypothesis is rejected.
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Permutation test

Remark
If the sample size n ≥ 10 it is not reasonable to construct all the
n! permuted samples. In that case, instead of considering all
the possible permutations, one can take for example 1000 or
10000 randomly chosen permuted samples and base the test
on using these.
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Significance testing, ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed. Now, the significance of the
regression model can be tested using the F test statistic.

1 The null hypothesis is H0 : βj = 0 for all j = 1, ..., k and the
alternative hypothesis is H1 : βj 6= 0 for at least one j .

2 The F test statistic:

F =
n − k − 1

k
R2

1− R2 =
n − k − 1

k
SSM
SSE

follows, under the null hypothesis, the F (k ,n − k − 1)
distribution.

Note that this test statistic is reliable only when the residuals
are normally distributed!
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F distribution
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Probability density functions of the F (k ,n − k − 1) distribution for
n = 20 and k = 1 (black), k = 2 (red), k = 3 (blue) and k = 8
(purple).
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Significance of one single regression parameter,
ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed.

Now
b ∼ Nk+1

(
β,D2(b)

)
,

where D2(b) = σ2(X>X )−1.
Thus

bj − βj

sbj
∼ t(n − k − 1),

where t(n − k − 1) denotes the t distribution with n − k − 1
degrees of freedom and s2

bj =
[
D̂2(b)

]
jj is the estimated

variance of βj . Here
[
D̂2(b)

]
jj denotes the jj element of the

estimated covariance matrix D̂2(b) = s2(X>X )−1.
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Significance of one single regression parameter,
ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed. Now, the significance of the
regression parameter βj can be tested using the t test statistic.

1 The null hypothesis is H0 : βj = 0 and the alternative
hypothesis is H1 : βj 6= 0.

2 The t test statistic:

t =
bj

sbj
, j = 0,1,2, ..., k ,

follows, under the null hypothesis, the t distribution with
n − k − 1 degrees of freedom.

Note that this test statistic is reliable only when the residuals
are normally distributed!
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Confidence intervals

Fact
A level (1− α) confidence interval for a parameter θ is a
random interval that contains the true (non-random) parameter
value θ with probability (1− α).

If one calculates a (1− α) confidence interval for a parameter θ
from 500 independent samples of i.i.d. observations, then
approximately 500× (1− α) of the intervals do contain the true
value θ.
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Bootstrap confidence interval for βj

A (1− α) bootstrap confidence interval for the regression
parameter βj , j = 0,1, ..., k can be obtained as follows.

1 Select n data points randomly with replacement from the
original observations (yi ,xi), i = 1, ...,n. Each data point
(yi ,xi) can be selected once, multiple times, or not at all.

2 Calculate a new parameter vector estimate bb from the
new sample formed in the previous step.

3 Repeat the previous steps m − 1 times. (For example 999
times.)

4 Order all the obtained estimates bj = (bb)j from the
smallest to the largest. Include also the original estimate.

5 Set the lower end of the bootstrap confidence interval to be
smaller than or equal to the [α2 ×m]th ordered estimate
and set the upper end of the bootstrap confidence interval
to be larger than or equal to the [(1− α

2 )×m]th ordered
estimate.

MS-C2128 Prediction and Time Series Analysis Linear model



Bootstrap confidence interval for βj

Some remarks:
In regression settings, one can calculate bootstrap
confidence intervals for βj also by bootstrapping the
residuals.
Bootstrap confidence intervals are distribution free.
The estimate is the better the larger the original sample
size is and the larger the number (m) of the bootstrap
samples is.
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Confidence interval for βj , ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed.

Now, as noted above,

bj − βj

sbj
∼ t(n − k − 1),

where t(n − k − 1) is the t distribution with n − k − 1
degrees of freedom and s2

bj is the estimated variance of βj .
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Confidence interval for βj , ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed. Under these assumptions, a
level (1− α) confidence interval for βj can be given as(

bj − t1−α/2sbj , bj + t1−α/2sbj
)
,

where t1−α/2 is the (1− α/2) · 100th percentile of the
t(n − k − 1) distribution.
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Prediction interval

The predicted value of y for a fixed x̃ = (x̃1, ..., x̃k ) is

ŷ = b0 + b1x̃1 + b2x̃2 + ...+ bk x̃k .

This prediction is done under uncertainties as
1 the regression parameters have been estimated and
2 the residuals explain part of the variation in y .

=⇒We wish to obtain an interval estimator that contains the
true value with probability (1− α).
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Prediction interval

One can apply bootstrapping in constructing interval estimates
for the predicted value of y , for fixed x̃ = (x̃1, ..., x̃k ), as follows.

1 Calculate one bootstrap estimate bb as described above.
2 Select a residual eb randomly from the original estimated

residuals ei and calculate a bootstrap prediction
yb = x̃>∗ bb + eb, where x̃∗ = (1, x̃1, ..., x̃k )>.

3 Repeat the previous steps m − 1 times. (For example 999
times.)

4 Order all the obtained predictions yb from the smallest to
the largest. Include also the original prediction.

5 Set the lower end of the bootstrap prediction interval to be
smaller than or equal to the [α2 ×m]th ordered bootstrap
prediction and set the upper end of the bootstrap
prediction interval to be larger than or equal to the
[(1− α

2 )×m]th ordered bootstrap prediction.
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Prediction interval, ε ∼ N(0, σ2)

Let the standard assumptions hold. Assume also that the
residuals are normally distributed. Now, a prediction interval for
y conditioned on x̃ = (x̃1, ..., x̃k ) can be given as

x̃>∗ b ± t1−α/2s
[
1 + x̃>∗ (X>X )−1x̃∗

] 1
2 ,

where s2 is the estimated residual variance and t1−α/2 is the
(1− α/2) · 100th percentile of the t(n − k − 1) distribution.
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Random explanatory variables

Everything above can be applied directly also when the matrix
X is random.
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Random explanatory variables

Standard assumptions, when the explanatory variables are
random are given as follows.

(i) The explanatory variables are random.
(ii) The explanatory variables are linearly independent.
(iii) E[ε | X ] = 0 for all i = 1, ...,n

(iv)-(v) cov(ε | X ) = σ2I .
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Positive definite matrices

A d × d matrix C (with real valued or complex valued elements)
is positive definite, if a∗Ca > 0, for all a ∈ Cd \ {0}.

A d × d matrix C (with real valued or complex valued elements)
is positive semidefinite, if a∗Ca ≥ 0, for all a ∈ Cd \ {0}.
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Positive definite matrices

It follows from the definition of positive definiteness that all
positive definite matrices are Hermite symmetric. That is, if a
square matrix C is positive definite, then C = C∗. For real
square matrices, positive definiteness can be defined as
follows.

A d × d matrix M with real valued elements is positive definite if
it is symmetric and if a>Ma > 0 for all a ∈ Rd \ {0}.

A d × d matrix M with real valued elements is positive
semidefinite if it is symmetric and if a>Ma ≥ 0 for all
a ∈ Rd \ {0}.

MS-C2128 Prediction and Time Series Analysis Linear model



Optimality

If the standard assumptions hold, then the least squares
estimator b is

1 unbiased (E[b] = β)
2 efficient in the sense that if b∗ is another unbiased linear

estimator for β, then the matrix C := cov(b∗)− cov(b) is
positive semidefinite.

3 consistent.
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Optimality

Standard least squares estimator is not always efficient.
Standard least squares estimator is not necessarily
efficient if the standard assumption (iv) homoscedasticity
and/or the standard assumption (v) uncorrelatedness do
not hold.
If the standard assumptions hold, but the vector β has
linear restrictions, then the corresponding restricted least
squares estimator is efficient.
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Next week:

Regression diagnostics
Regression graphics
Outlying observations
Constant/Non-constant regression parameters
Multicollinearity
Heteroscedasticity
Normality/Non-normality
Prediction capability

Model selection
Model selection tests and strategies
Model selection criteria
Linearization
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