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Introduction

If we wish to deal with nasty, badly behaving, time series data...
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Introduction

...we should first be familiar with nicely behaving stochastic
processes and their properties.
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Week 3: Stationary stochastic processes and ARMA
models
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Stochastic processes

A stochastic process (xt )t∈T is a (time-)indexed collection
of random variables defined on some common probability
space. Each

xt , t ∈ T

is a random variable representing a value at time t ∈ T .
The joint distribution of the random variables xt defines fully
the behaviour of the process (xt )t∈T .

Here, we consider discrete time stochastic processes for
which the index variable takes a discrete set of values.
That is, we assume that T ⊂ Z := {...,−2,−1,0,1,2, ...}.
We do not consider continuous time processes. (For
example processes for which T is the set of positive real
numbers.)
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Time series as a stochastic process

In time series analysis an observed time series is
interpreted as a realization of some stochastic process.

In comparison, i.i.d. observations are interpreted as
realizations of some random variable.

In time series analysis, we wish to:
(i) Find a suitable stochastic process that fits to the observed

time series.
(ii) Estimate the parameters of the corresponding stochastic

process and conduct hypotheses testing.
(iii) Construct predictions of the future behaviour of the time

series.
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Expected value, variance and covariance: Definitions

The expected value of xt , the variance of xt and the covariance
of xt and xs are useful, if one wishes to describe characteristics
of a stochastic process (xt )t∈T :

The expected value of xt is defined as:

E[xt ] = µt , t ∈ T

The variance of xt is defined as:

var(xt ) = E[(xt − µt )
2] = σ2

t , t ∈ T

The covariance of xt and xs is defined as:

cov(xt , xs) = E[(xt − µt )(xs − µs)] = γts, t , s ∈ T .
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Stationarity

Stochastic process (xt )t∈T is called stationary (or weakly
stationary) if:

(I) The expected value does not depend on time:

E(xt ) = µ, for all t ∈ T

(II) The variance is finite and does not depend on time:

var(xt ) = σ2 <∞, for all t ∈ T

(III) The covariance of xt and xs does not depend on the time
points t and s. It only depends on the difference of t and s:

cov(xt , xs) = γt−s, for all t , s ∈ T

A process (xt )t∈T is called strictly stationary if the joint
distributions of (xt1, xt2, ..., xtn) and (xt1+h, xt2+h, ..., xtn+h) are the
same for all n,h, t1, t2, ..., tn.
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Stationary stochastic processes

When you take a look at a realization of a stationary stochastic
process you should NOT detect

1 Trend
2 Systematic changes in variance
3 Deterministic seasonality
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The importance of stationary processes in modeling
time series data

Discussion
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Autocovariance: Definition

The k . autocovariance γk of a stationary stochastic process
(xt )t∈T is defined as

γk := γt−(t−k) = cov(xt , xt−k ) = E[(xt−µ)(xt−k−µ)], t ∈ T , k ∈ Z.

In particular
γ0 = var(xt ) = σ2, t ∈ T .

The autocovariance function of a stationary stochastic process
(xt )t∈T is a function of the autocovariances, γ : Z→ R,

γ(k) = γk for all k ∈ Z.
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Autocorrelation: Definition

The k . autocorrelation coefficient ρk of a stationary stochastic
process (xt )t∈T is defined as:

ρk =
γk

γ0
, k ∈ Z.

The autocorrelation coefficient ρk of (xt )t∈T measures how
strong the linear dependence of the variables xt and xt−k
is.

(i) ρ0 = 1
(ii) ρ−k = ρk for all k ∈ Z
(iii) |ρk | ≤ 1 for all k ∈ Z.

The autocorrelation function is the function ρ : Z→ [−1,1],

ρ(k) = ρk , for all k ∈ Z.
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Partial autocorrelation: Definition

The k . partial autocorrelation coefficient αk of a stationary
stochastic process (xt )t∈T is defined as:

αk = cor
(
xt , xt−k | xt−1, ..., xt−k+1

)
, t ∈ T , k ∈ Z

Partial autocorrelation coefficient is the conditional
correlation of xt and xt−k with respect to xt−1, ..., xt−k+1.
Partial autocorrelation coefficient measures the correlation
of xt and xt−k , when the values xt−1, ..., xt−k+1 are known.

(i) α0 = 1
(ii) α−k = αk for all k ∈ Z
(iii) |αk | ≤ 1 for all k ∈ Z.

The partial autocorrelation function is the function
α : Z→ [−1,1],

α(k) = αk , for all k ∈ Z.
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Autocorrelation and partial autocorrelation:
Yule-Walker equations


1 ρ1 ρ2 · · · ρk−1
ρ1 1 ρ1 · · · ρk−2
ρ2 ρ1 1 · · · ρk−3
...

...
...

. . .
...

ρk−1 ρk−2 ρk−3 · · · 1




αk1
αk2
αk3

...
αkk

 =


ρ1
ρ2
ρ3
...
ρk

 ,
where ρk is the k . autocorrelation coefficient.
The k . partial autocorrelation coefficient αk is obtained by
solving αkk from the equations above:

αk = αkk .

In particular

α2 = α22 =
ρ2 − ρ2

1

1− ρ2
1
.
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Lag and difference: Definitions

Let (xt )t∈T be a discrete time stochastic process.
The lag operator L is defined by:

Lxt = xt−1

The difference operator D is defined by:

Dxt = xt − xt−1

Remark
The difference operator D can be given in terms of the lag
operator L

D = 1− L,

as
(1− L)xt = xt − Lxt = xt − xt−1 = Dxt .
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Higher order lags and differences, Seasonal difference

The p. lag Lp is defined by:

Lpxt = xt−p,

where Lp = LL · · · L (p times): Lpxt = Lp−1Lxt = Lp−1xt−1.
The p. difference Dp is defined by:

Dpxt = (1− L)pxt ,

where Dp = DD · · ·D (p times).
For the p. difference Dp it holds that

Dpxt = (1− L)pxt =

p∑
i=0

(−1)i
(

p
i

)
xt−i .

The seasonal difference Ds is defined by:

Ds = 1− Ls,

where s is the length of the season (i.e. the period).
Now

Dsxt = (1− Ls)xt = xt − Lsxt = xt − xt−s.
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Example: 2. difference

The second difference of xt can be calculated as follows:
Approach 1:

D2xt = DDxt = D(xt − xt−1)

= Dxt − Dxt−1

= xt − xt−1 − (xt−1 − xt−2)

= xt − 2xt−1 + xt−2

Approach 2:

D2xt = (1− L)2xt =
(
1− 2L + L2)xt

= xt − 2Lxt + L2xt

= xt − 2xt−1 + xt−2
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Difference stationarity

Definition
Let (xt )t∈T be a discrete time stochastic process.

The process (xt )t∈T is difference stationary of order p, if

Dqxt is non-stationary for all q = 0,1,2, ...,p − 1,

but Dpxt is stationary.
The process (xt )t∈T is difference stationary of order p with
respect to the season length s, if

Dq
s xt is non-stationary for all q = 0,1,2, ...,p − 1,

but Dp
s xt is stationary.
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Trend and seasonality

Differencing can be applied in order to remove a trend.
Seasonal differencing can be applied in order to remove
deterministic seasonality. Sometimes both are needed in order
to obtain a stationary time series.

Example
If the term (season legth) s = 12, we often apply the first
difference (in order to remove the trend) and seasonal
difference with period 12 (in order to remove seasonality). We
then obtain the following series:

D12Dxt = DD12xt = (1− L)(1− L12)xt

=
(
1− L− L12 + L13)xt

= xt − xt−1 −
(
xt−12 − xt−13

)
.
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ARMA processis

The family of ARMA processes is central in time series
analysis.

AR model = Autoregressive model
MA model = Moving Average model
ARMA model = Autoregressive Moving Average model
SAR model = Seasonal AR model
SMA model = Seasonal MA model
SARMA model = Seasonal ARMA model
ARIMA model = Integrated ARMA model
SARIMA model = Integrated Seasonal ARMA model

MS-C2128 Prediction and Time Series Analysis Stationary stochastic processes and ARMA models



Pure stochastic process

Discrete time stochastic process (εt )t∈T is a pure stochastic
process, if

(i) E[εt ] = µ, t ∈ T
(ii) var(εt ) = σ2, t ∈ T
(iii) cov(εt , εs) = 0, t 6= s

If the expected value µ = 0, then the pure stochastic
process is called white noise and the following notation is
used:

(εt )t∈T ∼WN(0, σ2).

If the random variables εt are independent and identically
distributed, then the pure white noise process is called iid
white noise and the following notation is used:

(εt )t∈T ∼ IID(0, σ2)
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AR(p) model

An autoregressive process of order p is given by:

xt = φ1xt−1 + φ2xt−2 + ...φpxt−p + εt , (εt )t∈T ∼WN(0, σ2).

This process is called autoregressive, because xt depends
on xt−1, xt−2, ..., xt−p and because it resembles multiple
linear regression model

y = β0 + β1x1 + β2x2 + ...+ βpxp + ε

where:
The response variable is xt and the explanatory variables
are xt−1, xt−2, ..., xt−p.
The regression coefficients are β0 = 0 and βi = φi ,
i = 1, ...,p.
The residual is εt .
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AR(p) model

Example
An AR(1) process is given by:

xt = φ1xt−1 + εt , (εt )t∈T ∼WN(0, σ2)
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White noise vs AR(1)
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MA(q) model

A moving average process of order q is given by:

xt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (εt )t∈T ∼WN(0, σ2)

The random variable xt is the weighted sum of the random
variables εt−q, ..., εt .

Example
A MA(1) process is given by:

xt = εt + θ1εt−1, (εt )t∈T ∼WN(0, σ2)
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White noise vs MA(1)
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ARMA(p,q) model

An autoregressive moving average process with an AR part of
order p and a MA part of order q is given by:

xt−φ1xt−1−φ2xt−2−...−φpxt−p = εt +θ1εt−1+θ2εt−2+...+θqεt−q,

where (εt )t∈T ∼WN(0, σ2).
xt depends on both, the random variables xt−1, .., xt−p and
the random variables εt−1, ..., εt−q.

Example
An ARMA(1,1) process is given by:

xt − φ1xt−1 = εt + θ1εt−1

or equivalently
xt = φ1xt−1 + θ1εt−1 + εt
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White noise vs ARMA(1,1)
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SAR(P)s model and SMA(Q)s model

A seasonal AR process of order P, with period s is given
by:

xt = Φ1xt−s+Φ2xt−2s+...+ΦPxt−Ps+εt , (εt )t∈T ∼WN(0, σ2).

A seasonal MA process of order Q, with period s is given
by:

xt = εt +Θ1εt−s+Θ2εt−2s+...+ΘQεt−Qs, (εt )t∈T ∼WN(0, σ2).

Example
A SAR(2)12 process is given by:
xt = Φ1xt−12 + Φ2xt−24 + εt

A SMA(1)6 process is given by: xt = εt + Θ1εt−6
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White noise vs SAR(2)12
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White noise vs SMA(1)6
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SARMA(P,Q)s model

A seasonal ARMA process with period s, an AR part of order P
and a MA part of order Q is given by:

xt − Φ1xt−s − ...− ΦPxt−Ps = εt + Θ1εt−s + ...+ ΘQεt−Qs,

where (εt )t∈T ∼WN(0, σ2).

Example
A SARMA(2,1)4 process is given by:

xt − Φ1xt−4 − Φ2xt−8 = εt + Θ1εt−4

or equivalently

xt = Φ1xt−4 + Φ2xt−8 + Θ1εt−4 + εt
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Lag polynomials

We next consider cases with an AR part, a seasonal AR part,
an MA part and a seasonal MA part. We start by getting familiar
with lag polynomials.

MS-C2128 Prediction and Time Series Analysis Stationary stochastic processes and ARMA models



Lag polynomials: Definition

Lag polynomial of order r is given by:

δr (L) = 1 + δ1L + δ2L2 + ...+ δr Lr .

It now follows from the linearity of the operator L, that

δr (L)xt =
(
1 + δ1L + δ2L2 + ...+ δr Lr)xt

= xt + δ1Lxt + δ2L2xt + ...+ δr Lr xt

= xt + δ1xt−1 + δ2xt−2 + ...+ δr xt−r .

Example

If φ(L) := 1− φ1L and Φ(L) := 1− Φ1L12, then we have that

φ(L)Φ(L)xt =
(
1− φ1L

)(
1− Φ1L12)xt

=
(
1− φ1L− Φ1L12 + φ1Φ1L13)xt

= xt − φ1xt−1 − Φ1xt−12 + φ1Φ1xt−13.
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SARMA(p,q)(P,Q)s model

A multiplicative seasonal ARMA process with period s, a pure
AR part of order p, a pure MA part of order q, a seasonal AR
part of order P, and a seasonal MA part of order Q is given by:

Φs
P(L)φp(L)xt = Θs

Q(L)θq(L)εt , (εt )t∈T ∼WN(0, σ2),

where φp, θq, Φs
P and Θs

Q are the following lag polynomials

φp(L) = 1− φ1L− φ2L2 − ...− φpLp

θq(L) = 1 + θ1L + θ2L2 + ...+ θqLq

Φs
P(L) = 1− Φ1Ls − Φ2L2s − ...− ΦPLPs

Θs
Q(L) = 1 + Θ1Ls + Θ2L2s + ...+ ΘQLQs

(Here, it is customary to assume that the polynomials
Φs

P(L)φp(L) and Θs
Q(L)θq(L) do not share roots.)
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SARMA(p,q)(P,Q)s model

Consider a SARMA(p,q)(P,Q)s process

Φs
P(L)φp(L)xt = Θs

Q(L)θq(L)εt , (εt )t∈T ∼WN(0, σ2),

Now
The AR part is of order p; The corresponding parameters
are: φ1, φ2, ..., φp

The seasonal AR part is of order P; The corresponding
parameters are: Φ1,Φ2, ...,ΦP

The MA part is of order q; The corresponding parameters
are: θ1, θ2, ..., θq

The seasonal MA part is of order Q; The corresponding
parameters are: Θ1,Θ2, ...,ΘQ
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SARMA(p,q)(P,Q)s model

Note that the SARMA(p,q)(P,Q)s models

Φs
P(L)φp(L)xt = Θs

Q(L)θq(L)εt , (εt )t∈T ∼WN(0, σ2)

cover all the following processes:
AR(p)
MA(q)
ARMA(p,q)
SAR(P)s

SMA(Q)s

SARMA(P,Q)s
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Roots of the lag polynomials

Based on the fundamental theorem of algebra, the lag
polynomials of order r

δr (L) = 1 + δ1L + δ2L2 + ...+ δr Lr

have r roots(, that may or may not be complex valued).

Example

Let φ(L) = 1− L + 1
2L2. The the roots of the polynomial φ(L)

L1 = 1 + i and L2 = 1− i

lie outside of the unit circle:

‖L1‖2 = ‖L2‖2 = 2.
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In what follows, when we consider different
SARMA(p,q)(P,Q)s models, we assume that E[xt−vεt ] = 0 for
all v ≥ 1. Moreover, we assume that the corresponding
polynomials Φs

P(L)φp(L) and Θs
Q(L)θq(L) do not share roots.
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SARMA(p,q)(P,Q)s model: Stationarity

SARMA(p,q)(P,Q)s process xt is stationary, if and only if the
roots of the lag polynomials of the AR part

φp(L) = 1− φ1L− φ2L2 − ...− φpLp

Φs
P(L) = 1− Φ1Ls − Φ2L2s − ...− ΦPLPs

lie outside of the unit circle.

Fact
A SARMA process can not be analyzed using auto- and partial
autocorrelation functions unless it is stationary.
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SARMA(p,q)(P,Q)s model: Stationarity

A SARMA(p,q)(P,Q)s process xt is stationary if and only if it
has an MA(∞) representation

xt = Ψ(L)εt , (εt )t∈T ∼WN(0, σ2),

where

Ψ(L) = φ−1(L)Φ−1(L)θ(L)Θ(L) =
∞∑

i=0

ψiLi , (ψ0 = 1),

and where the series
∞∑

i=0

ψi

converges absolutely.
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SARMA(p,q)(P,Q)s model: Invertibility

A SARMA(p,q)(P,Q)s process is called invertible, if it has an
AR(∞) representation

Π(L)xt = εt , (εt )t∈T ∼WN(0, σ2),

where

Π(L) = θ−1(L)Θ−1(L)φ(L)Φ(L) =
∞∑

i=0

πiLi , (π0 = 1)

and where the series
∞∑

i=0

πi

converges absolutely.
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SARMA(p,q)(P,Q)s model: Invertibility

A SARMA(p,q)(P,Q)s process is invertible, if and only if the
roots of the lag polynomials of the MA part

θq(L) = 1 + θ1L + θ2L2 + ...+ θqLq

Θs
Q(L) = 1 + Θ1Ls + Θ2L2s + ...+ ΘQLQs

lie outside of the unit circle.

Fact
The autocorrelation function of a SARMA process does not
define the MA and the seasonal MA parts of the process
uniquely unless the process is invertible.
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Stationarity and invertibility

Example
1 An AR(p) process:

xt = φ1xt−1 +φ2xt−2 + ...φpxt−p + εt , (εt )t∈T ∼WN(0, σ2).

Is stationary iff the roots of the lag polynomial (of the AR
part) lie outside of the unit circle.
Is always invertible.

2 A MA(q) process

xt = εt +θ1εt−1 +θ2εt−2 + ...+θqεt−q, (εt )t∈T ∼WN(0, σ2).

Is always stationary.
Is invertible iff the roots of the lag polynomial (of the MA
part) lie outside of the unit circle.

MS-C2128 Prediction and Time Series Analysis Stationary stochastic processes and ARMA models



Spectrum of a stationary process

If the analysis of a time series is based on correlation
functions, we say that the analysis takes place in the time
domain.
The analysis of a stationary time series can also be
conducted in the frequency domain.

In the frequency domain, the analysis of a time series is
based on the so called spectral density function f (λ) of the
process.
The analysis conducted in the frequency domain is
especially useful in revealing cyclic components of the
process.

The autocovariance function γk and the spectral density
function f (λ) of a stationary process have exactly the same
information.
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The spectral density function f (λ) (also called the power
spectral function or spectrum) of a stationary process (xt )t∈T is
given by

f (λ) =
1

2π

(
γ0 + 2

∞∑
k=1

γk cos(λk)
)
, λ ∈ [0, π],

where γk is the k . autocovariance of (xt )t∈T .
λ: (angular) frequency
2π/λ: period
λ/2π: the number of cycles per time unit

Fact

γk =

∫ π

−π
f (λ) cos(λk)dλ = 2

∫ π

0
f (λ) cos(λk)dλ,

for all k = 0,1,2, ... In particular var(xt ) = γ0 = 2
∫ π

0 f (λ)dλ
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Spectrum of a stationary process: Aliasing

f (λ) =
1

2π

(
γ0 + 2

∞∑
k=1

γk cos(λk)
)
, λ ∈ [0, π],

We see that the frequencies λ, −λ, λ and λ± 2sπ,
s = 1,2, ... have the same values.
This phenomena is called aliasing.
One can examine the spectral density function only on the
interval [0, π].
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Spectrum and the cyclic components of a stationary
process

Consider a stationary process that has a cyclic component with
period s. Then the corresponding spectral density function
obtains its maximal values at λs = 2π/s, the basic frequency,
and also at harmonic frequencies

kλs, k = 1,2, ..., bs/2c,

where bs/2c = max{m ∈ Z | m ≤ s/2}.

Example

If s = 4, then λ4 = π/2 and there is only one harmonic
frequency π. If s = 12, then λ12 = π/6 and the harmonic
frequencies are 2π/6, 3π/6, 4π/6, 5π/6 and π.
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Next week:

1 Characteristics of the ARMA models
1 Statistical properties of the stationary ARMA models
2 ARIMA and SARIMA models

2 Fitting an ARMA model
1 Estimation
2 Box-Jenkins method
3 Decomposition of time series
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