Characteristics of the ARMA models

MS-C2128 Prediction and Time Series Analysis

Fall term 2021

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



Week 5: Predicting using ARMA models, Kalman filter

and Dynamic regression

@ Prediction

@ Predicting using ARMA models
@ Exponential smoothing

©Q Kalman filter
© Dynamic regression
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0 Prediction
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Predicting using ARMA models: |dea

@ Consider a time series x;,t =...,-2,-1,0,1,2,.... We
wish to predict the value x;s based on the observed
values up to the time point t.

@ The prediction X, ; is thus some function of the values
vy Xt—2, Xt—1, Xt.

@ The goal is to find a function of ..., x;_», X;_1, X; such that
the obtained value is as close as possible to the true value
Xt+s

@ An optimal prediction (in the sense of the mean square
error) is obtained from the conditional expected value

Rivsit = E [Xtws | Xt Xe—1, .- ]
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Predicting using ARMA models: |dea

Assume that the process (x;):c 7 has an MA representation

xe=> ller, o =1, Z|¢,r<oo
j=0

and assume that the process (€t);c 7 has been observed until
the time point ¢ (that is, we have the observations
€t €t—1, 6l‘—2"')'
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Predicting using ARMA models: |dea

@ Now

Xtys = €trs+V1€tps— 1+ o+ Vs 16011 +set + g 1601+

and the optimal prediction at the time point ¢ (in the sense
of the mean square error) is

Xirsit = E [Xtys | €t €421, ..] = hsertsiter_1+s 26t2+...

@ The mean square error of the prediction is

E [(xtvs — Reasi)®] = (1403 403+ .+ 02 1)o?,
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Predicting using ARMA models

Instead of observing the stationary process (€)1, one usually
observes the process (Xi)¢cT,

and it is often not reasonable to use the MA(oo) representation
for predicting. However, invertibility of the process guarantees
that it is irrelevant whether one observes (x;):c1 or (€t)teT-

@ If the process is invertible, the s-step prediction at time
point t is

P1 Xty s 1)t + P2Xtys—2t + -+ PpXeys_plt

)A(t+s|t = +Oset +0sy1€t 1 + ... +0get1s—q S=1,2,...,Q,
1 Xt 51|t + P2 Xpys—)t T -+ PpXepspt S=>q+1,

where )“(T“ = X, when 7 < t and the terms ¢; can be
calculated recursively using the formula e; = x¢ — Xj;—1.
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Predicting using ARMA models

@ If one predicts far to the future, that is s > q, the prediction
does not take the moving average into account as there is
not enough data to calculate it.

@ Above, it was assumed that we observe infinitely long
history of the values x;. In practice, one can set the
unobserved (historical) values to be equal to 0. This works
well assuming that there are still plenty of observations
and that the coefficients |0;| and |¢;| are reasonably small.
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Predicting using ARMA models: Optimality

@ If the series x; is a realization from ARMA(p, q) process
with known parameters ¢1, ¢2, ..., ¢p, 01, 02, ..., 04, then the
prediction X, ¢ is optimal in the sense of the mean square
error

MSE(Xt4sit) = E [(Xt+s — )A(t+s|t)2]‘

@ In practice, the parameters of the ARMA(p, g) are not
known and have to be estimated. Then the mean square
error depends on estimations errors and the prediction is
not, strictly speaking, optimal anymore. However, it can
usually be thought to be close to optimal.

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



Predicting using ARMA models

@ Consider X, ¢ as a function of s.

@ Under pure AR models or ARMA models, %5 — 0
exponentially, as s — oc.
@ Under MA(g) model, Xtys)t is equal to 0 for s > q.
@ Thus ARMA models are suitable for short term forecasting,
but not for long term forecasting!
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Exponential smoothing

@ Ad-hoc forecasting method, that does not rely on modeling.
@ Applied widely.
e Easy to calculate in practice.

e Gives reasonably good predictions in practice, but is rarely
optimal.
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Simple exponential smoothing

@ The value of x;, 1 is predicted using a weighted sum of the
previous observation x;, x;_1, X;_o, ...,

(o)
Xttt = Z WiXt—i
i=0

e The weights w; = a(1 — a)’, 0 < o < 1, decrease
exponentially. (That is why the method is called exponential
smoothing.)

e The parameter « is called the smoothing factor.

@ One can update the prediction using the formula
)A(t+1\t =axt+ (1 - 04))’\(2‘|t—1 = aér + )A(t\tq’

where é = x; — X;;_1 is the prediction error at time point t.
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Simple exponential smoothing

K11t = axt + (1 — ) Xpjr—1

@ One can show that simple exponential smoothing gives
optimal predictions in the case that x; is an ARIMA(0,1,1)
process:

e Dx;is a MA(1) process

Dxt = Xt — Xt—1 = €1 + O1e—1,  ()rer ~ WN(0,0?)

@ Choose av = 0 + 1
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Simple exponential smoothing

X1t = axe + (1 — )Xy 1

@ One can also show that simple exponential smoothing
gives optimal predictions in the case that x; is a noisy
random walk, that is in the case:

Xy = my; + Et,Where
my = my_q + ny,is a random walk

(e)tet ~ 11D(0, %), (n)eT ~ 11D(0,03)

var(et)

@ Optimal o depends on the signal-noise-ratio Var(n) -
e The proof relies on using the Kalman filter. (We talk about
Kalman filter later.)
@ Level m; (of the random walk) can be estimated from the
observations x;:

m; = aXt + (1 — a)mt,1 and )A(t+1|t = M.
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Double exponential smoothing

Simple exponential smoothing does not provide good
predictions when there is a trend in the data. Double
exponential smoothing is an extension of the simple
exponential smoothing to the cases when there is a trend.
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Double exponential smoothing

In double exponential smoothing, on top of predicting, the level
m and the trend g are updated:
Xyt = My + 1Bt
my = o Xt + (1 — o) (Me—1 + Br-1)
Bt = (M —my_q1) + (1 — a2)Bt1.

@ One can write
my =My + Br1 + 1€
Bt = Br-1 + ayazés,
where & = Xt — Xj¢—1-
@ The parameters « are called the data smoothing factors.
@ The parameters (5 are called the trend smoothing factors.

@ For well selected «;, this method is optimal under
ARIMA(0,2,2) models.
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Exponential smoothing: Comments

@ Exponential smoothing is often applied using fixed
smoothing parameters.

@ Sometimes smoothing parameters are estimated from the
data. That usually provides a better fit.

@ Applying SARIMA models is recommended, if possible.
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e Kalman filter
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Kalman filter

Kalman filter is a tool for predicting X1 = (Xi(t+1), -+ Xk(t+1))>
when we only observe a noisy version, y;: = (V1¢, .-, Yat), Of Xt.
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State space representation

Consider a situation where we wish to predict
Xt11 = (X1(t41)s -+ Xk(t+1)), DUt we only observe

yt = (.y11‘7 -~-7J/dt)-
Assume that this system has the following state space

representation
Xt1 = FXt + Vi
yi=H"x +w

where y; and w; are d-variate random vectors, X;, 1 and V; 1
are k-variate random vectors and

Q t=s
0, t+#s

R, t=s

cov(Vi, Vs) = { 0, t#s.

and  cov(w;, ws) :{

Assume also that v;, wy, and x; are mutually independent for
all t > 1.
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Kalman filter

Kalman filter provides a prediction for X; 1 = (X1(t41), - Xk(t41))>
based on the observations y; = (yi¢, ..., Yat)-

@ Prediction for x;, ¢ at time point ¢ is the conditional
expected value

X = ElXepr | Y0, Y= (0o

Kalman filter calculates the predictions Xy, X1, ..., X7|7_1
recursively and every prediction is associated with the mean
square error matrix

Piijt := E [(Xer1 — Xep1)e) (Xeet — Xeapp) ']
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Kalman filter: Algorithm

@ The initial values (has to be selected):
Xi)() = E[x1]
Pij = E [(xi —E[x])(x1 — E[x])"]

@ Recursion formulae for the prediction )“(,+1|, and for the
matrix Py q; are

~ A —1 ~
X1yt = FXyr—1 + FPy—yH(H Py _1H+ R) ™ (y: — H  Xy1_+)
Pyt = (F — K,HT)FP,|1_1 (F — HK,T) + KtFt'KtT + Q,
where K; is the Kalman gain
K: := FPy_{H(H Py_{H+R) ™.
© Prediction y;,; is obtained by applying the formula
Vietr = HT)A(t+1|t ja
E [(Vi41 — Verr1t) Vst — Vernie) '] = H PreH + R.
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Kalman filter: Generalization

@ Itis possible to apply the Kalman filter approach also when
one wishes to drop the linearity assumption. Then, the
state space representation is given as

X1 = F(2t, Xt) + Vigq
yi = hi(x;) + wy,

where Xx;.1, ¥i, Vi1 and w; are as above, z; is exogenous,
independent of all the other variables, and f; and h; are
functions that depend on time t, state x; and on the input
Z;.

@ In this case, it is not as straightforward to obtain predictions
as in the linear case, but the predictions are usually very
good.
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State space representation: MA(1) process

Example
Consider the MA(1) process

Vi =€t +016¢1.

Define the state vector x; and the noise vy, by setting
—| ¢ _ [et]

Xt = [EtJ and  Viq = [ 0"

Then -
0

O_

0
Xit1 = Fx; + vipq, F= [1

and

ye=H'x, where H' =[1 0].
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Example: GPS navigation

@ Assume that there are my satellites that measure the
pseudo-distances and their differences between an object
and the satellite at time points t. Assume also that there
are m, support stations that measure the distances
between the object and the station. The vector
¥i = Vit, .., Yat) T, d = 2my + m,, contains the measured
distances.

@ State vector x; contains the location coordinates &; and the
speed v; of the object.

X: = |:‘£,§:| .
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Example: GPS navigation

@ Now, the corresponding state space model for the location
(and the speed) of the object is

X1 = Fx; + uy
Yt = h(x;) + wy,

where h(x;) is a well chosen nonlinear function and u; and
w; are the noise.
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e Dynamic regression

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



Dynamic regression models

In statistics, time series models can be divided into two groups:
@ Autoprojective time series models are models that involve
only the time series to be forecasted (e.g. ARMA models).

© Dynamic regression models are models that may involve
the time series to be forecasted and the history of another
time series as well.
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Static linear regression

Consider the linear time series regression model
Yi=a+0xi+e, teT,

where the response variable y; and the explanatory variable x;
come from time series and where

o E[€t|Xt]:0,t€ T
Q var(er | X)) =%, tc T
Q cor(er,es | X, xs) =0, t # s.

Then the conditional expected value of the response variable y;
conditional on x; = x is

Elyt | Xt = X] = a + Bx.
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Static linear regression

Assume that the explanatory variable xs is the same constant x
forall s < t:
Xs=Xx, §<t

Then the conditional expected value of ys is a constant for all
s<t
Elys | Xs=Xx]=a+ Bx =Y.
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Static linear regression

yt:oH—ﬂXt—i—et, tET,

@ Assume that, at time point t + 1, the explanatory variable
grows by one unit:
Xty1 =X+ 1.

@ Then the conditional expected value of the response
variable y; 1 is

EVis1 | X1 =x+ 1] =a+B(x+1) =y + 5.

@ The conditional expected value remains the same until the
value of the explanatory variable changes.
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Static linear regression

yt:a+ﬁxt+et, tET,

@ The parameter g models the instant change in the
conditional expected value of the response variable y; as
the value of x; changes by one unit.

@ The model is static:

e The conditional expected value of the response variable
does not change unless the value of the explanatory
variable changes.

e The conditional expected value of the response variable
changes immediately, without any lags, when the value of
the explanatory variable changes.
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Dynamic regression: ldea

@ In dynamic regression, the conditional expected value of
the response variable may also changes slowly, or
progressively, when the value of the explanatory variable
changes.

@ A very simple example of a dynamic regression model is
the distributed lag model. The distributed lag model is a
model for time series data in which a regression equation
is used to predict the current values of the response
variable based on both, the current and the lagged (past)
values of an explanatory variable.
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Distributed lag model

A simple distributed lag model is given by
Y=« +60Xt +B1Xf—1 + . +B,0Xf—p+ €&, t=p+ 17,0"‘27 S3)

where the residual ¢; is white noise on condition xi, ..., Xt_p.
@ In this model, there are p + 1 explanatory variables. Those
are the values of xs at time points t,t —1,....,t — p.
@ The response variable y;, at time point t depends on

e The value of the variable x;s at time point t.
e The lagged (past) values of the variable xs.

@ The conditional expected value of the response variable y;
is

E[ye | Xt, Xt—1, -, Xt—p] = o+ BoXt + B1Xt—1 + ... + BpXt—p-
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Distributed lag model

Ye=a+ BoXt + BiXt—1 + ... + BpXe—pt e, t=p+1,p+2, ..,

Remark
The distributed lag models are stationary with respect to time in
the sense that the regression parameters depend only on the
corresponding lags, not on the actual time points:
@ The regression parameters can be seen as the derivatives
of y with respect to x with different lags:

dyr  OYirs

- 8Xt_s 8Xt ’

Bs

@ Without this condition, the parameters f, ..., 5p would
depend on time, and not only on the length s of the
corresponding time interval.
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Distributed lag model

Yt:a+5oxt+ﬂ1xt—1 +~--+6,0Xt—p+€t7 t:p+ 17p+27"'7

@ Assume that the explanatory variable x; is the same
constant x forall s € {t —p, ..., t},

Xs=X, se{t—p,..t}

@ Then the conditional expected value of y;
E[v: | Xt Xt—1,.c; Xt—p] = @+ BoX + B1X + ...+ fpX = a+ X =y,

where 3 = 3o + 81 + ... + Bp.
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Distributed lag model

Assume that

o= 1% whense {t—p,..,1t}
ST Ix+1 whens=t+1,t+2...,

Then

Elve | Xt, .o, Xt—p] = o+ BoX + S1X+ ... + BpX =a+ X =y
E[Viet | Xet1y ooy Xt—ppt] = @+ Bo(X + 1) + Bix + ... + Bpx =y + o
ElVite | Xt12, .., Xt—pr2] = a + fo(X + 1) + B1(X + 1) + fox + ... + BpX

EVerptt | Xevps oo Xi] = a4 Bo(X + 1) + oo+ Bpa (X + 1) + Bpx
E[y[+p+1 | Xt+p+1, ...,Xt+1] =a+ ﬁO(X + 1) + ...+ 5p(x+ 1) == y+ ,8
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Distributed lag model

Assume that the value x; is the same constant x + 1 and does
not change after the time point t + 1. Then the the conditional
expected value of ys

Elys | Xs; .., Xs—p] =+ Bo(Xx+ 1)+ ...+ Bp(x+1)=y+8

remains the same fors > t+p+ 1.
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Distributed lag model

Y= a+50Xt+B1Xf—1 + .. +5,0Xf—p+€t7 t:p+ 17,0"‘27'--7

The regression parameters of the model can be interpreted as
follows.

@ The parameter 5y models the instant change in the
conditional expected value of the response variable y; as
the value of x; changes by one unit.

@ The sum

B=0o+0B1+...+Bp
models the long term change in the conditional expected

value of the response variable y; as the value of x;
changes by one unit.
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Distributed lag model: Parameter estimation

The parameters of the distributed lag model

Yt = a+ BoXt + B1Xe—1 + ... + PpXt—p + €, t=p+1,p+2,..,

can be estimated using classic linear regression.
@ Problems:

o If the autocorrelations of the process (x;);c are non-zero,
the explanatory variables of the regression model are
multicollinear.

o If we have n observations of the series (x;):c7, we have
n — p observations for estimating p 4+ 2 parameters.
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Distributed lag model: General form

In distributed lag models, y; might depend on the entire history
of the explanatory process, and the explanatory process may
be k-variate. That is

Vi=a+ Z BriXa(t—iy + Z BoiXp(t—iy + - + Z BriXk(t—i) T €t
i=0 i=0 i=0

where (et)yer ~ WN(0,0?).

o Ifinfinitely many of the regression parameters j;; differ
from zero (for example, 3 = Bjod;, |6j| < 1), then a change
in the value of the explanatory variable has an effect on the
conditional expected value of y; infinitely long after that.
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Simple ARMAX model

An ARMAX model is a combination of an ARMA model and a
linear regression model, where the response process y;
depends on

@ the history of the autoregressive part of the process
@ noise
@ an exogenous variable x;.

p g b
Ve=et+ Y Giioit Y bieit+ > miXei,
i=1 i=1 i=0

where
@ (et)teT ~ WN(O,02),
@ ¢1,..., ¢p are the parameters of the AR part,
@ 04, ...,04 are the parameters of the MA part, and

@ 1, ..., np are the parameters related to the exogenous
variable x;.
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ARMAX model

As when applying ARMA models, also when applying ARMAX
models, one can model seasonal changes. In ARMAX models,
the number of exogenous variables is not limited to one. An
ARMAX model, in general form, can be given as

O(L)y; = O(L)er + Z H(L)xit,

where ®(L),©(L) and H;(L) are similar lag polynomials as in
the case of ARMA models and the x;. = (X1, X2, ...X;t) are the
observed explanatory variables.
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ARIMAX model

An ARIMAX model is like an ARIMA model, but it contains one
or more exogenous variables.

@ The differences D"y; (for some order h) of an ARIMAX
model form an ARMAX model and the parameters for the
differences can be estimated similarly as in the case of
ARIMA models.

R:arima (), arimax ().
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@ ARIMAX models are reasonably general, but they are not
suitable for long term forecasting. Moreover, ARIMAX
models are linear on the explanatory variables.

@ In general, we may consider models

fyr) = 9((.Vs){s§t—1}a (Xs){sgt}) + €4,

where the d-variate y; = (Y11, .., Yat) depends on its own
history and on the history of the k-variate time series
(Xt)teT, Xt = (X1¢, ..., Xkt), t € T, through some nonlinear
functions f and g.

@ In practice, we often have to rely on these general models,
but developing theory for them is very difficult.

@ One has to know (or estimate) the functions f and g and
then proceed case by case.
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@ Guest lecturer
@ Summary
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