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Lecture 1 1
1.1 Intended learning outcomes
I Identify how the course is technically implemented

I Identify Hilbert space and subspace of physical states

I Operate to state vectors by linear operators

1.2 Preface

Quantummechanics is a mathematical framework to model nature.

It is said to be the most successful theory in all of physics, owing

to its success in describing a wide range of phenomena, including

atomic orbitals, quantum tunneling, and superconductivity.

The aim of this course is to formulate quantum mechanics based

on a solid mathematical foundation. We start by introducing the

basic mathematical objects required to describe physical systems.

Then, we introduce the postulates of quantum mechanics, and

discuss how to quantize a classical system. We also consider

some example systems, including qubits and a brief discussion on

quantum computing. Overall, we aim to be fairly rigorous with

the mathematical details, especially in the beginning, but certain

subtleties are left out in order to fit more useful tools into the

course. You may encounter such advanced mathematics in the

Master’s courses to fill in the gaps in your knowledge. To keep you

on track, we intent to tell you when we do not prove of handle

something rigorously.

Enjoy!
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1: Not going to ask about Cauchy se-

quences in the exam, but this condi-

tion is what makes a Hilbert space

complete. Thus, if you are unfamiliar

with the term Cauchy sequence, no

need to study it for this course.

2: A functional 5 acting on a vector

space + is a mapping 5 : + → C.

5 is said to be bounded, if ∀E ∈ + ,
there exists a constant " such that

|5 (E) | ≤ " ‖E ‖.
3: Not going to ask about this in the

exam.

1.3 Hilbert space and kets vectors Math recap on vector spaces

A vector space + over a scalar

field � is a set where addition,

denoted by +, is defined such that

for D, E,F ∈ + , + : + × + → + ,

0, 1 ∈ � , the following properties

hold:

1. D + (E +F) = (D + E) +F
2. D + E = E + D
3. ∃ 0 ∈ + s.t.+ + 0 = +

4. ∀E ∈ + ∃ − E ∈ + s.t. E +
(−E) = 0

5. 0(1E) = (01)E
6. 1E = E , when 1 ∈ �
7. 0(D + E) = 0D + 0E
8. (0 + 1)E = 0E + 1E

For our purposes, the scalar field

� is always either R or C.

The fundamental mathematical structure in quantum mechanics

is the Hilbert space, which is a generalization of Euclidean space

that may be infinite-dimensional, and whose coordinates may be

complex numbers. The elements of a Hilbert space are referred to

as ket vectors, denoted by |k 〉. A Hilbert spaceH is a complete inner

product space, which means that it has the following properties:

1. H = {|k 〉} is a vector space over the scalar field C (see math

recap on the right)

2. For any pair of elements |k 〉 , |q〉 ∈ H , there is a scalar (inner)

product 〈k |q〉 B ( |k 〉 , |q〉) ∈ C that satisfies

(a) 〈k |q〉 = (〈q |k 〉)∗ = 〈q |k 〉∗ (conjugate symmetry)

(b) 〈k |0q1 + 1q2〉 = 〈k | (0 |q1〉 + 1 |q2〉) = 0 〈k |q1〉 +1 〈k |q2〉
(linearity)

(c) 〈k |k 〉 ≥ 0; 〈k |k 〉 = 0 ⇐⇒ |k 〉 = 0 (positive definite-

ness)

3. All Cauchy sequences converge into H . That is, if ∃{|k8〉}
s.t. ‖ |k=〉 − |k<〉 ‖ → 0 for =,< → ∞ then ∃ |Ψ〉 ∈ H s.t.

|k<〉 → |Ψ〉 for< →∞.1

Consequently, we can define a norm ‖ |k 〉 ‖ = ‖k ‖ B
√
〈k |k 〉 ≥ 0.

For example, the following inequalities apply:

I | 〈k |q〉 | ≤ ‖k ‖‖q ‖, i.e., Cauchy–Schwarz inequality

I ‖ |k 〉 + |q〉 ‖ ≤ ‖k ‖ + ‖q ‖, i.e., triangle inequality

Physical states, i.e., objects that can be used to model the states

of physical systems on the quantum-mechanical level, are those

elements ofH which have a norm of unity, i.e., 〈k |k 〉 = 1. In this

course, we use the terms ket vector and state somewhat interchange-

ably, since we are concerned mostly with physical states. But many

of the results also hold for ket vectors with any finite norm.

1.4 Bra vectors

As discussed above, the ket vectors are the elements of H , i.e.,

H = {|k 〉}. For each given ket vector |q〉 we symbolically define

an object 〈q |, through the inner product such that for all |k 〉 ∈ H ,

we have 〈q |k 〉 := ( |q〉 , |k 〉) ∈ C. Below, we justify why 〈q | can be

referred to as a bra vector, i.e., the set of all bra vectors {〈q |} forms

a vector space.

For a fixed |q〉, the inner product ( |q〉 , |k 〉) can be identified as

a mapping that takes any ket vector |k 〉 to a complex number.

Thus 〈q | is a linear and bounded functional
2

acting on H . The

so-called Riesz representation theorem
3
states that for any linear
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bounded functional 〈q |, there exists a corresponding unique ket

vector |q〉 ∈ H such that 〈q |k 〉 = ( |q〉 , |k 〉) for all |k 〉 ∈ H . This is

the definition of the bra vector 〈q |; it is the functional whose action

on any |k 〉 corresponds to taking the inner product with the ket

|q〉.

From the above-noted uniqueness of the ket vector |q〉 correspond-
ing to its bra 〈q |, it folows that there is a one-to-one correspondence

betweenH = {|k 〉} and the set of all bra vectorsH ∗ B {〈q |}. The
setH ∗ is referred to as the dual space ofH .

1.5 Linear operators

Definition 1.5.1 A mapping ˆ� is a linear operator on H ⇐⇒
ˆ� : H → H s.t. ∀ |k 〉 , |q〉 ∈ H , 0, 1 ∈ C:

ˆ� (0 |k 〉 + 1 |q〉) = 0 ˆ� |k 〉 + 1 ˆ� |q〉 . (1.1)

We denote the set of linear operators on H by L(H). We also

define the notation

| ˆ�k 〉 B ˆ� |k 〉 B ˆ� ( |k 〉) . (1.2)

It follows that ∀ ˆ�, ˆ� ∈ L(H), we have

ˆ�
(
ˆ� |k 〉

)
=

(
ˆ� ˆ�

)
|k 〉 . (1.3)

1.6 Outer product

An important example of a linear operator is the outer product of

two vectors.

Definition 1.6.1 We define the outer product |k 〉〈q | : H → H ,
where |k 〉 , |q〉 ∈ H s.t. ∀ |j〉 ∈ H we have:

( |k 〉〈q |) |j〉 = |k 〉〈q |j〉 = 〈q |j〉|k 〉 (1.4)

Note that in the second equality above, we moved the term 〈q |j〉
to the front, since it is simply a scalar.



1: Defined similarly for infinite-

dimensional spaces.

Lecture 2 2
2.1 Intended learning outcomes
I Use bases to represent operators

I Identify the minimal mathematical structure to describe a

physical system quantum mechanically

2.2 Bases of H

Above, we have discussed bra and ket vectors in a very abstract

way, without a way to visualize these vectors. To make them more

tangible, we will introduce them coordinates using a basis.

Definition 2.2.1 A set of ket vectors {|q8〉}#8=1
∈ H , # ∈ Z+, is

referred to as linearly independent if
∑#
8=1
28 |q8〉 = 0 implies 28 =

0∀28 ∈ C.

The dimension of H , Dim{H}, is the largest # for which such a

linearly independent set of vectors exists.

The set {|q8〉}#8=1
is referred to as complete if∀ |k 〉 ∈ H ,∃ {2: }#:=1

, 2: ∈
C s.t. |k 〉 = ∑#

:=1
2: |q:〉.1 That is, any ket vector in H may be ex-

pressed as a linear combination of the vectors |q:〉. The coefficients

2: are the coordinates of |k 〉. We have thus arrived at the definition

of a basis:

Definition2.2.2 Acomplete set of linearly independent vectors {|q:〉}
is referred to as a basis forH .

A basis {|q:〉} is referred to as orthonormal if

〈q; |q<〉 = X;< =

{
0, for ; ≠<,

1, for ; =<.
(2.1)

The symbol X;< is referred to as the Kronecker delta.

An observation for the orthonormal basis {|q:〉}: for an arbitrary

|k 〉 ∈ H , we have

|k 〉 =
∑
:

2: |q:〉 (2.2)

=⇒ 〈q< |k 〉 =
∑
:

2: 〈q< |q:〉 = 2< . (2.3)
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Thus,

|k 〉 =
∑
<

2< |q<〉

=
∑
<

〈q< |k 〉|q<〉

=
∑
<

|q<〉〈q< |k 〉

=

(∑
<

|q<〉〈q< |
)
|k 〉 ,

where in the last step, we have used the fact that the outer product

is linear. Based on this, we conclude that

∑
< |q<〉〈q< | = ˆ� , the

identity operator. This holds for any orthonormal basis. It is a

useful trick to insert the identity operator in strategic places, and

expand it in terms of an orthonormal basis like this.

2.3 States vs. vectors

For a given basis {|q:〉} and a ket vector |k 〉 ∈ H , we may write

|k 〉 =
∑
:

2: |q:〉 (2.4)

=̂


21

22

23

...


,

where =̂ stands for represented by. Consequently, a basis ket vector
|q<〉 is represented by a column vector where 2< = 1 and 2: = 0

for : ≠ <. Note that the vector representation of a state may be

infinite-dimensional.

Given a column vector representation of |k 〉 with the coefficients

{2: }, the corresponding bra vector 〈k | may be represented by the

conjugate transpose of the column vector representing |k 〉:

〈k | =̂
[
2∗

1
2∗

2
2∗

3
. . .

]
. (2.5)

This can be shown using the inner product.

2.4 Operators vs. matrices

Analogously to representing kets as column vectors, it is possible

to represent operators as matrices. Let
ˆ� ∈ L(H) and {|q<〉} be
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2: An operator
ˆ� is said to be

bounded if ∀ |k 〉 ∈ H there exists

a constant " such that ‖ ˆ� |k 〉 ‖ ≤
" ‖ |k 〉 ‖.

an orthonormal basis ofH . Then,

ˆ� = ˆ� ˆ� ˆ� =

(∑
<

|q<〉〈q< |
)

ˆ�

(∑
:

|q:〉〈q: |
)

(2.6)

=
∑
<,:

|q<〉〈q< | ˆ�|q:〉︸      ︷︷      ︸
B�<: ∈C

〈q: |

=
∑
<,:

�<: |q<〉〈q: |

=̂


�11 �12 . . .

�21 �22 . . .
...

...
. . .

 .
This is the matrix representation of the operator

ˆ�. Note that the

matrix might be infinite-dimensional.

Using the matrix representation, the operation of
ˆ� on a ket vector

|k 〉 may be written explicitly:

ˆ� |k 〉 =
∑
<,:,;

�<: |q<〉〈q: |q; 〉 (2.7)

=
∑
<,:

�<:2: |q<〉 .

We observe that the expression

∑
<,: �<:2: corresponds to matrix-

vector multiplication, and conclude that

ˆ� |k 〉 =̂

�11 �12 . . .

�21 �22 . . .
...

...
. . .



21

22

...

 .
In other words, we obtain the column vector representation of

|k ′〉 = ˆ� |k 〉 by calculating the matrix-vector product between the

matrix representation of
ˆ� and the column vector representation

of |k 〉.
Math on complex conjugation

∀I ∈ C we have G,~ ∈ R and i is

the imaginary unit, then:

I = G + i~

I∗ = G − i~2.5 Adjugate

Let
ˆ� ∈ L(H), and furthermore, let

ˆ� be bounded.
2

We define

the action of
ˆ� on a left-lying bra vector (i.e. an element in the dual

spaceH ∗), ˆ� : H ∗ →H ∗, ∀ |q〉 , |k 〉 ∈ H through the relation

About notation

These are equivalent:

〈q | ˆ�|k 〉 =
(
|q〉 , ˆ� |k 〉

)
)

=

(
ˆ�† |q〉 , |k 〉

)
= 〈 ˆ�†q |k 〉

(
〈q | ˆ�

)
|k 〉 = 〈q |

(
ˆ� |k 〉

)
. (2.8)

We observe that the operation 〈q | ˆ� is a linear functional onH and

is bounded since
ˆ� is bounded.
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Thus it follows from the Riesz representation theorem that ∃ |q ′〉 ∈
H s.t. 〈q ′ | = 〈q | ˆ�. This also defines a linear operator

ˆ�† as

ˆ�† |q〉 = |q ′〉 , (2.9)

which is referred to as the adjugate of
ˆ�.

For example, we have for 2 ∈ C

〈q |2 |k 〉 = ( |q〉 , 2 |k 〉) (2.10)

= 2 ( |q〉 , |k 〉)
= (2∗ |q〉 , |k 〉) ,

Thus, 2† = 2∗ ∈ C, i.e., the adjugate of a complex number is just the

complex conjugate.

2.6 Properties of adjugate

The following equalities are not proven here, but proofs can be

constructed based on the above definitions.(
ˆ�†

)†
= ˆ� (2.11)(

0 ˆ�†
)†

= 0∗ ˆ� (0 ∈ C) (2.12)(
ˆ� ˆ�

)†
= ˆ�† ˆ�† (2.13)

( |k 〉〈q |)† = |q〉〈k | (2.14)

Furthermore, given a matrix representation � of
ˆ�, the matrix

representation of
ˆ�† is given by the conjugate transpose of �,

which is obtained by taking the transpose and then the complex

conjugate of each element of �.

2.7 Eigenvalues and eigenstates

For an operator
ˆ� ∈ L(H), if a ket vector |k:〉 ∈ H satisfies the

eigenvalue equation

ˆ� |k:〉 = _: |k:〉 (2.15)

for some scalar _: ∈ C, we define |k:〉 to be an eigenvector, or

eigenstate, of
ˆ� with an eigenvalue _: . The subscript : signifies

that there may be (infinitely) many eigenstates and corresponding

eigenvalues.

The set of eigenvalues {_: } is referred to as the spectrum of
ˆ�.
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It is possible that for a given eigenvalue _: , there are multiple

eigenvectors |k:,8〉 that satisfy Eq. (2.15), with 8 = 1, . . . , 6: . The

number of eigenvectors 6: corresponding to _: is referred to as the

degeneracy of _: .

2.8 Hermitian operators

Definition 2.8.1 The operator ˆ� ∈ L(H) is defined to be Hermitian
iff3 3: If and only if

ˆ� † = ˆ� .

Hermitian operators are very important in quantum mechanics as

discovered below.

The key feature of Hermitian operators comes from the so-called

generalized spectral theorem, which states that for a Hermitian

operator
ˆ� ∈ L(H), there exists a complete orthonormal basis of

H , {|k:〉}, which satisfies

ˆ� |k:〉 = _: |k:〉 . (2.16)

Importantly, it also follows from the spectral theorem that the

eigenvalues _: are real numbers.

The above result implies that for any Hermitian operator
ˆ� , it is

always possible to find a basis such that

ˆ� =
∑
:

_: |k:〉〈k: | . (2.17)

In the matrix representation, this is a matrix with just the eigenval-

ues _: on the diagonal. This is useful for many reasons. For one, it

is very easy to operate on any vector with such an operator. Fur-

thermore, it turns out that many problems in quantum mechanics

boil down to finding the eigenvalues of Hermitian operators. The

process of finding such a basis in which the eigenvalues are on the

diagonal is referred to as diagonalization, and much of the effort

in theoretical physics is spent on trying to diagonalize operators

related to different physical systems.

2.9 Postulates of quantum mechanics

We finally have introduced all the necessary mathematics to start

discussing physical systems. The theory of quantum mechanics is

in essence built upon the six postulatesdiscussed below. They are the

fundamental assumptions, or axioms, of quantum mechanics, i.e.,

they are not proven, but rather they are based on empirical evidence.

Predictions derived from the postulates have been experimentally
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5: Recall that since
ˆ� is Hermitian,

this implies that all measurement out-

comes are real numbers, as onewould

expect.

verified to extremely high precision. In this course, we consider

quantum mechanics simply as a model for such experimental

observations.

Postulate I

For each physical system there exists a corresponding (rigged)
4

4: We discuss this later

Hilbert space.

Postulate II

Each physical state of this system can be represented by a quantum

state |k 〉 ∈ H , where 〈k |k 〉 = 1.

Postulate III

For each measurable quantity � of the system we have a corre-

sponding operator
ˆ� ∈ L(H) s.t. ˆ�† = ˆ�. Such an operator (and

often also the corresponding quantity) is referred to as an observable
of the system.

In an ideal measurement of the quantity �, any measurement

outcome equals to an eigenvalue of
ˆ�.5

Postulate IV: Measurement

Let |k 〉 ∈ H and
ˆ�† = ˆ� ∈ L(H) with a discrete spectrum {0=}.

As discussed in Sec. 2.8, there always exists an orthonormal basis

for H , {|q=,8〉}=,8=∈{1,...,6= }, where 6= is the amount of degeneracy,

such that the basis vectors are eigenstates of
ˆ�.

The probability of obtaining a specific measurement result 0= is

given by

% (0=) B
6=∑
8=1

��〈q=,8 |k 〉��2 . (2.18)

Postulate V: Effect of measurement on the state

Suppose that a system is in the state |k 〉 ∈ H . If we measure the

quantity corresponding to
ˆ� and obtain the measurement result
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0= (an eigenvalue of
ˆ�), the state of the system collapses into the

state

|k ′〉 =
ˆ%= |k 〉
‖ ˆ%= |k 〉 ‖

, ˆ%= =

6=∑
8=1

|q=,8〉〈q=,8 | . (2.19)

ˆ%= is referred to as a projector onto the subspace corresponding to

the subspace spanned by the eigenstates {|q=,8〉}6=8=1
.

Definition 2.9.1 ˆ%= ∈ L(H) is a projector iff ˆ%2

= = ˆ%=.

Postulate VI: Temporal evolution

If a system is in the state |k 〉, the temporal evolution of the state

|k (C)〉 is determined by the Schrödinger equation:

iℏmC |k (C)〉 = ˆ� |k (C)〉 , (2.20)

where mC B
m
mC
, ℏ = 1.0545718 × 10

−34
Js is the reduced Planck

constant, and
ˆ� = ˆ� †, ˆ� ∈ L(H) is theHamiltonian, the observable

corresponding to the total energy of the system.
6

6: The measurable quantity corre-

sponding to the observable
ˆ� is the

Hamiltonian � from classical Hamil-

tonian mechanics.

Note that
ˆ� may also depend on time through temporally de-

pendent parameters {U8 (C)}, i.e., ˆ� = ˆ� [U1(C), U2(C), . . . ]. This is
discussed later.



Lecture 3 3
3.1 Intended learning outcomes
I Differentiate between a measurement outcome and its expec-

tation value

I Identify continuous bases for Hilbert spaces

I Apply Lagrangian formalism to quantize physical systems

3.2 Expectation values

Definition 3.2.1 Let ˆ� ∈ L(H) and |k 〉 ∈ H . The expectation value
of ˆ� when the system is in the state |k 〉 is defined by

〈�〉 B 〈k | ˆ�|k 〉 . (3.1)

In particular, if we have an observable quantity � with a corre-

sponding Hermitian operator
ˆ�, the expectation value is equal

to the classical expectation value 〈�〉 of �. That is, repeatedly
preparing the system in the state |k 〉 and measuring�, one obtains

on average the result 〈�〉, even though individual measurements

only yield discrete values 0: , the eigenvalues of ˆ�.

Mathematically, the above discussion maybe considered as follows:

Recall that
ˆ� = ˆ�† implies that there exists an orthonormal basis

{|q:〉} such that
ˆ� |q:〉 = 0: |q:〉, 0: ∈ R. Subsequently, we write

the state as |k 〉 = ∑
: 2: |q:〉, from which we obtain

〈k | ˆ�|k 〉 =
(∑
:

2: |q:〉
)†

ˆ�
∑
:

2: |q:〉 (3.2)

=

(∑
:

2: |q:〉
)†∑

:

2:0: |q:〉

=
∑
=,:

2∗=0:2: 〈q= |q:〉

=
∑
:

0: |2: |2︸︷︷︸
% (0: )

=
∑
:

0:% (0: ) .

The sum on the right side of the last equality above is the clas-

sical definition of the expectation value for the measurement

outcomes.
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1: It is possible to verify that all the

properties of a Hilbert space hold

even with such non-normalizable

states, but it is fairly laborious and

therefore we do not discuss it further.

3.3 Variance

Definition 3.3.1 We define the variance of ˆ� when the system is in
the state |k 〉 as

Δ�2 = 〈k |
(

ˆ� − 〈k | ˆ�|k 〉
)
2 |k 〉 (3.3)

= 〈k | ˆ�2 |k 〉 −
(
〈k | ˆ�|k 〉

)
2

=
∑
:

02

:
%: −

(∑
:

0:%:

)
2

.

As above in the case of the expectation value, if
ˆ� is a Hermitian

operator corresponding to the observable �, the above definition

coincides with that of the classical variance of �.

3.4 Continuous bases

Continuous bases are sometimes required, for example, if continu-

ous variables are used.

Let {|kU 〉} ∈ H , where U, U ′ ∈ R s.t.

〈kU |kU′〉 = X (U − U ′), (3.4)

where X (G) is the Dirac delta function. Such a set of vectors is a

continuous base forH .

Note that 〈kU |kU 〉 = X (0) = ∞. Thus |kU 〉 is not possible to normal-

ize. This is why we consider rigged Hilbert spaces, which allow

such states.
1

Math on Dirac delta function

For a smooth function, i.e., 5 ∈
�∞: ∫

dG{X (G) 5 (G)} = 5 (0)

Now, similarly as for discrete bases, we may write any |k 〉 ∈ H
using this basis, but with an integral instead of a sum:

|k 〉 =
∫

2U |kU 〉 dU (3.5)

=

∫
〈kU |k 〉|kU 〉 dU

=

∫
|kU 〉〈kU |k 〉 dU =

(∫
|kU 〉〈kU | dU

)
︸                ︷︷                ︸

ˆ�

|k 〉

Note that the index U ∈ R of the coefficients 2U ∈ C is continuous.

Often, instead of 2U we write 〈kU |k 〉 B k (U), wherek (U) : R→ C
is generally referred to as the wave function.

Typically, the wave function is expressed in the position basis {|G〉},
i.e., k (G) := 〈G |k 〉. From the above equation it follows that the

probability density for the particle to reside at position G is given
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Figure 3.1: Ideal classical pendulum,

where a mass< is attached to a mass-

less rigid rod of length ; . The rod may

rotate without friction about a single

axis as described by the angle \ . We

assume a uniform gravitational field

described by 6.

by |k (G) |2. Note that the wave function cannot fully describe all

quantum systems, just those where such continuous variables exist

and are sufficient.

Definition 3.4.1 In a continuous basis, the measurement probability
of the measurement outcome to reside in [U, U + dU] is defined by

d% (U) = |〈kU |k 〉|2 dU. (3.6)

3.5 Commutators

Definition 3.5.1 The commutator of ˆ�, ˆ� ∈ L(H) is given by

[ ˆ�, ˆ�] = ˆ� ˆ� − ˆ� ˆ�.

If two operators satisfy [ ˆ�, ˆ�] = 0, i.e., ˆ� ˆ� = ˆ� ˆ�, it is defined that ˆ�

and ˆ� commute.

The commutator is an important operation between two operators

and appears in numerous places in quantum mechanics.

3.6 Classical pendulum

Above, we introduced how to connect mathematics to physics

through the postulates. The Hamiltonian of the system is the key

here. Once one has it, also the relevant Hilbert space arises from

its eigenstates in addition to the temporal evolution of any state.

However, how do we obtain the Hamiltonian for the system?

To answer this question, we take a slight detour to classical mechan-

ics. As an illustrative example, we discuss a classical pendulum,

and construct the classical Hamiltonian for it. Subsequently, in the

next section, we provide a general procedure, or recipe, for convert-

ing the classical Hamiltonian of any system to the corresponding

quantum Hamiltonian. In the next lecture, we use the obtained

Hamiltonian for the pendulum to describe the quantum harmonic

oscillator.

Recall from classical mechanics that a system with # degrees of

freedom can be described by a set of # generalized coordinates

{@8}#8=1
. The coordinates may for example be just the position of

a particle, but often the description of the system is drastically

simplified if one chooses the generalized coordinates wisely.

We consider the pendulum shown in Fig. 3.1. Even though themass

at the end of the pendulum moves in a 2D plane, we recognize

that there is only one degree of freedom in the system; the position
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is fully determined by the angle \ . We thus choose the generalized

position

@ = ;\ . (3.7)

Wedrop the subscript 8 becausewehaveonly onedegree of freedom,

but all the definitions below apply in general for multidimensional

systems as well.

The potential energy + depends only on @, and not on the time

derivative ¤@. For small \ , it assumes the form

Math on dot notation

¤~ =
d~

dC
≠
m~

mC︸︷︷︸
generally

Math on Taylor series

cosG = 1 − G
2

2

+ G
4

24

− · · ·

+ = 6<ℎ (3.8)

=<6; (1 − cos\ ) ≈ 1

2

<6;\2 =
<6

2;
@2.

It is straightfowrard to write the kinetic energy) in terms of ¤@:

) =
1

2

<E2 =
1

2

<;2 ¤\2 =
1

2

< ¤@2. (3.9)

Definition 3.6.1 The Lagrangian is defined as

! B ) −+ . (3.10)

Thus, the Lagrangian for our case is

! = ) −+ =
1

2

<;2 ¤\2 − 1

2

<6;\2

(3.11)

=
1

2

< ¤@2 − <6
2;
@2.

Definition 3.6.2 The generalized momentum corresponding to the
coordinate @8 is defined as

?8 B
m!

m ¤@8
.

Note that when computing the momentum from the Lagrangian,

@8 and ¤@8 should be considered independent variables. Using the

above definition, the generalized momentum is (again, dropping

the subscript)

? =
m

m ¤@

(
1

2

< ¤@2 − <6
2;
@2

)
=< ¤@. (3.12)
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Definition 3.6.3 The classical Hamiltonian is defined as

� B
∑
8

¤@8?8 − !.

Using this, we obtain the Hamiltonian of the pendulum (i.e. the

1D harmonic oscillator):

� = ¤@? − ! =< ¤@2 −
(
1

2

< ¤@2 − <6
2;
@2

)
(3.13)

=
?2

2<
+ <6

2;
@2 = ) ++ .

3.7 Quantizing a classical system

The term quatization refers to the process of building a quantum-

mechanical model from the classical description of the system in

question. In general, given the classical Hamiltonian of a system, it

can be quantized using the following procedure:

1. Operator substitution:Replace all generalized positions and

momenta with corresponding Hermitian operators, simply

by writing hats on the classical quantities:

@8 −→ @̂8 , @̂8 : H → H , @̂8 = @̂
†
8
,

?8 −→ ?̂8 , ?̂8 : H → H , ?̂8 = ?̂
†
8
.

2. Quantized Hamiltonian: Using step 1, convert the classical

Hamiltonian � to the operator
ˆ� , i.e., replace all classical

generalized positions and momenta in � by their quantum

mechanical counterparts.

3. Canonical commutation relation: It follows from the postu-

lates, that the positions and momenta must satisfy [?̂8 , @̂8] =
?̂8@̂8 − @̂8 ?̂8 = −iℏ, which is referred to as the canonical commu-
tation relation (CCR).

4. Temporal evolution:With the above operators and the con-

straint imposed by the CCR, the temporal evolution of the

system is given by the Schrödinger equation iℏmC |k 〉 = ˆ� |k 〉.

For the pendulum discussed above, the quantization procedure

simply yields

ˆ� =
?̂2

2<
+ <6

2;
@̂2. (3.14)

The significance of the CCR and the temporal evolution for the

harmonic oscillator will be discussed on the following lectures.
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2: This is discussed in the Quantum

Circuits course.

The above procedure maybe used for many different systems. For

example, it is possible to quantize electric circuits by choosing

charge as the generalized position and magnetic flux as the mo-

mentum, or vice versa.
2

Another important application is the

quantization of the electromagnetic field, which follows a similar

procedure but with a continuous set of generalized coordinates.



Lecture 4 4
4.1 Intended learning outcomes
I Apply creation and annihilation operators for a harmonic

oscillator

I Apply canonical commutation relations

I Identify Heisenberg’s uncertainty relation

4.2 One-dimensional quantum harmonic
oscillator

As we derived above in Eq. (3.14), the operator corresponding to

the classical Hamiltonian of the harmonic oscillator is given by

ˆ� =
?̂2

2<
+ <

2

6

;︸︷︷︸
≕l2

@̂2

(4.1)

=
?̂2

2<
+ 1

2

<l2@̂2, (4.2)

where [@̂, ?̂] = iℏ, @̂ = @̂†, ?̂ = ?̂†.

Math on C

For G,~ ∈ R,

(G + ~) (G − ~) = G2 − ~2

(G + i~)︸   ︷︷   ︸
≕I

(G − i~)︸   ︷︷   ︸
=I∗

= G2 + ~2 = |I |2

Next, we wish to solve the eigenstates of the oscillator. To this

end, we try to rewrite the Hamiltonian in the following form, with

�, �,� ∈ R:

ˆ� = (�@̂ − i�?̂) (�@̂ + i�?̂) +�. (4.3)

With some algebraic manipulation and the help of the CCR, we

find

ˆ� = �2@̂2 + i��@̂?̂ − i�?̂�@̂ + �2?̂2 +� (4.4)

= �2@̂2 + �2?̂2 + i�� [@̂, ?̂]︸︷︷︸
=iℏ︸     ︷︷     ︸

=−ℏ��

+�.
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Comparing this to Eq. (4.2), we choose

� =

√
1

2

<l2, (4.5)

� =

√
1

2<
, (4.6)

� = ℏ�� =
ℏl

2

. (4.7)

With these, we may write

ˆ� =
?̂2

2<
+ 1

2

<l2@̂2

(4.8)

=

(
@̂

√
<l2

2

+ i?̂

√
1

2<

)† (
@̂

√
<l2

2

+ i?̂

√
1

2<

)
+ 1

2

ℏl

= ℏl

[√
<l

2ℏ

(
@̂ + i

<l
?̂

)†
︸                   ︷︷                   ︸

=0̂†

√
<l

2ℏ

(
@̂ + i

<l
?̂

)
︸                 ︷︷                 ︸

≕0̂

+1

2

]

= ℏl

(
0̂†0̂ + 1

2

)
.

Definition 4.2.1 For the one-dimensional quantum harmonic oscilla-
tor, we define

0̂ B

√
<l

2ℏ

(
@̂ + i

<l
?̂

)
,

from which is follows that

0̂† =

√
<l

2ℏ

(
@̂ − i

<l
?̂

)
,

and

ˆ� = ℏl

(
0̂†0̂ + 1

2

)
.

.

The operator 0̂ is referred to as the lowering or annihilation operator
and 0̂† is referred to as the raising or creation operator. Sometimes, 0̂

and 0̂† together are referred to as ladder operators.

Note that 0̂ ≠ 0̂†, i.e. 0̂ is not Hermitian, which means that it does

not correspond to an observable. However, the product 0̂†0̂ is

Hermitian. Thus it is enough to find its eigenvalues and eigen-

states to solve the quantum-mechanical problem of the harmonic

oscillator.
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Let us calculate the commutator of 0̂ and 0̂† as

[0̂, 0̂†] = <l
2ℏ

[
@̂ + i

<l
?̂, @̂ − i

<l
?̂

]
(4.9)

=
<l

2ℏ

[
@̂,− i

<l
?̂

]
+

[
i

<l
?̂, @̂

]
=

i

2ℏ

(
− [@̂, ?̂]︸︷︷︸

=iℏ

+ [?̂, @̂]︸︷︷︸
=−iℏ

)
= 1.

Some observations about the quantum harmonic oscillator:

1. 〈k | ˆ� |k 〉 ≥ 0 ∀ |k 〉, since

〈 ˆ� 〉 = 〈k |ℏl
(
0̂†0̂ + 1

2

)
|k 〉 (4.10)

=
ℏl

2

+ 〈k |ℏl0̂†0̂ |k 〉

= ℏl

(
1

2

+ ‖0̂ |k 〉 ‖2
)
≥ 0.

Thus all eigenenergies are positive.

2. Let |k 〉 be an eigenstate of
ˆ� s.t.

ˆ� |k 〉 = Y |k 〉. Then,

ˆ�0̂ |k 〉 = ℏl

(
0̂†0̂︸︷︷︸

=0̂0̂†−1

+1

2

)
0̂ |k 〉 (4.11)

= 0̂ℏl

(
0̂†0̂ + 1

2

− 1

)
|k 〉

= 0̂
(

ˆ� − ℏl
)
|k 〉

= 0̂ (Y − ℏl) |k 〉 = (Y − ℏl)0̂ |k 〉 .

In other words, |k ′〉 = 0̂ |k 〉 is also an eigenstate of
ˆ� , with

energy Y − ℏl . Similarly, we have
ˆ�0̂† |k 〉 = (Y + ℏl)0† |k 〉.

Thus, 0̂ lowers and 0̂† raises the energy of the state |k 〉 by
one quantum of energy ℏl . This is where their names come

from.

From points 1. and 2., it follows that there exists a state |0〉 ∈ H
s.t. 0̂ |0〉 = 0. Thus, |0〉 is referred to as the ground state, i.e., the
state with the lowest possible energy. Let us find the energy of the

oscillator in the state |0〉:

ˆ� |0〉 = ℏl

(
0̂†0̂ + 1

2

)
|0〉 (4.12)

=
ℏl

2

|0〉 .

Thus the spectrum of
ˆ� is {Y=} =

{
ℏl

(
= + 1

2

)}
, and the corre-

sponding eigenstates are simply written as {|=〉}. That is, ˆ� |=〉 =
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ℏl

(
= + 1

2

)
|=〉.

4.3 Symbolic operator differential

Let @̂ and ?̂ be a conjugate pair and @̂ be such that it has a continuous

spectrum.

Such a conjugate pair satisfies the commutation relation [@̂, ?̂] =
iℏ. Some calculations are simplified if we symbolically define

?̂ = −iℏm@̂ , where m@̂ means we take symbolically the derivative

w.r.t. @̂. We will check below that this symbolical differentiation is

consistent with the commutation relation.

For example, ∀ |k 〉 ∈ H

m@̂ 5 (@̂) |k 〉 =
(
5 ′(@̂) + 5 (@̂)m@̂

)
|k 〉 , (4.13)

where 5 is a continuously differentiable function and 5 ′ denotes

its derivative.

Let us check the above claim that [@̂, ?̂] = iℏwhen ?̂ = −iℏm@̂ :

[@̂, ?̂] = @̂?̂ − ?̂@̂ (4.14)

= @̂
(
−iℏm@̂

)
−

(
−iℏm@̂

)
@̂

= −iℏ@̂m@̂ + iℏm@̂@̂

= −iℏ@̂m@̂ + iℏ
(
m@̂@̂

)︸︷︷︸
= ˆ�

+iℏ@̂m@̂

= iℏ.

4.4 Solving the ground state in the position
representation

Using the fact that 0̂ |0〉 = 0 and the above definition of the symbolic

differential, we have

0 = 〈G ′ |0̂ |0〉 (4.15)

= 〈G ′ |
√
<l

2ℏ

(
Ĝ + i

<l
(−iℏmĜ )

)
︸                          ︷︷                          ︸

= 0̂

(∫
dG̃ |G̃〉〈G̃ |

)
︸            ︷︷            ︸

= ˆ�

|0〉

=

√
<l

2ℏ

∫
dG̃ 〈G ′ |G̃〉︸︷︷︸

X (G̃−G′)

(
G̃ + ℏ

<l
mG̃

)
k0(G̃)︸︷︷︸
≕〈G̃ |0〉
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⇒
(
G + ℏ

<l
mG

)
k0(G) = 0 (4.16)

⇒ k0(G) = � exp

(
−G

2<l2

2ℏ

)
, (4.17)

where� =
(
<l
cℏ

)
1/4

is a normalization coefficient.

We may further derive the wave function of the first excited state

from k1(G) = ˜� 〈G | 0̂† |1〉 where we do not even need to solve a

differential equation since we know k (G)0 and we may simply

multiply it and take the first derivative. Similarly, we may proceed

to derive the wave function of any state |=〉. However, we do not do

this here, but come back to the harmonic oscillator on the second

half of the course where we study the wave functions of the excited

states further.

4.5 Uncertainty relations

Definition 4.5.1 The Heisenberg uncertainty relation is defined as

Δ@Δ? ≥ ℏ

2

, (4.18)

where Δ�2 = 〈 ˆ�2〉 − 〈 ˆ�〉2 and [@̂, ?̂] = iℏ since @̂ and ?̂ are a canonical
conjugate pair1 1: Warning: does not strictly speaking

apply if an operator is not bounded

.

Definition 4.5.2 The Robertson uncertainty relation is defined as

Δ�Δ� ≥ 1

2

��〈[ ˆ�, ˆ�]〉
�� , (4.19)

where ˆ�, ˆ� ∈ L(H) may be unbounded, ˆ� = ˆ�†, ˆ� = ˆ�†, and
〈·〉 B 〈k | · |k 〉.

Let us prove the above relations. To this end, we define |5 〉 =(
ˆ� − 〈 ˆ�〉

)
|k 〉 and |6〉 =

(
ˆ� − 〈 ˆ�〉

)
|k 〉. Then, Math on norm of C

For I ∈ C,

|I |2 = (Re I)2 + (Im I)2

≥ (Im I)2 =

(
I − I∗

2i

)
2

Δ�2 = 〈k |
(

ˆ� − 〈 ˆ�〉
)
2 |k 〉 (4.20)

= 〈k |
(

ˆ� − 〈 ˆ�〉 ˆ�
)︸          ︷︷          ︸

(( ˆ�−〈 ˆ�〉 ˆ�) |k 〉)†

(
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

= 〈5 |5 〉 = ‖|5 〉‖2 ,

and similarly,

Δ�2 = 〈6|6〉 = ‖|6〉‖2 . (4.21)
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Then, the Cauchy–Schwarz inequality implies

|〈5 |6〉| ≤ ‖|5 〉‖ ‖ |6〉‖ (4.22)

⇒ Δ�2Δ�2 ≥ | 〈5 |6〉︸︷︷︸
∈C

|2 (4.23)

=
��〈k | ( ˆ� − 〈 ˆ�〉 ˆ�

) (
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

��2
≥

��〈k | ( ˆ� − 〈 ˆ�〉 ˆ�
) (

ˆ� − 〈 ˆ�〉 ˆ�
)
|k 〉 − 〈k |

(
ˆ� − 〈 ˆ�〉 ˆ�

) (
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

��2
4

=

��〈k | [ ˆ� − 〈 ˆ�〉 ˆ� , ˆ� − 〈 ˆ�〉 ˆ� ] |k 〉
��2

4

=

��〈[ ˆ�, ˆ�]〉
��2

4

�



1: The general expression for
ˆ� in

e

ˆ�
e

ˆ� = e

ˆ�
is given by the Baker–

Campbell–Hausdorff formula.

Lecture 5 5
5.1 Intended learning outcomes
I Apply the operator exponential to symbolically solve the

Schrödinger equation

I Differentiate between a qubit and a general quantum system

I Represent a qubit state on the Bloch sphere

5.2 Unitary temporal evolution

Let |k (C)〉 ∈ H and
ˆ� ∈ L(H) be the Hamiltonian of a system. Let

|k (C = 0)〉 = |k (0)〉 be the initial state of the system, the state at

C = 0. As discussed before, the temporal evolution is then given by

the Schrödinger equation:

iℏmC |k (C)〉 = ˆ� |k (C)〉 (5.1)

⇐⇒ mC |k (C)〉 = −
i

ˆ�

ℏ
|k (C)〉 .

Note that we have assumed that
ˆ� is independent of time.

Definition 5.2.1 For ˆ� ∈ L(H), let

e

ˆ� B
∞∑
==0

ˆ�=

=!

. (5.2)

Note that in general e
ˆ�
e

ˆ� ≠ e
ˆ�+ ˆ�

. The equality holds if
ˆ� and

ˆ�

commute.
1

Math on a diff.eq.

mG 5 (G) = _5 (G) =⇒ 5 (G) = �e
_G

With this definition,

mCe
ˆ�C = mC

( ∞∑
==0

ˆ�=C=

=!

)
(5.3)

=

∞∑
==1

ˆ�==C=−1

=!

= ˆ�

∞∑
==1

(
ˆ�C
)=−1

(= − 1)!

= ˆ�

∞∑
==0

(
ˆ�C
)=

=!

= ˆ�e

ˆ�C .
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The temporal evolution can then be written as

|k (C)〉 = e
−i

ˆ�C/ℏ |k (0)〉 (5.4)

C ˆ* (C) |k (0)〉 ,

where
ˆ* (C) = exp

(
−i

ˆ�C/ℏ
)
is the time-evolution operator, or some-

times referred to as the propagator of the system.

Recalling that
ˆ� † = ˆ� , we observe that

ˆ* (C)† =
(
e
−i

ˆ�C/ℏ
)†

(5.5)

= e
i

ˆ�C/ℏ

= ˆ* (−C),

from which it follows that

ˆ* (C)† ˆ* (C) |k (0)〉 = ˆ* (C)† |k (C)〉 (5.6)

= ˆ* (−C) |k (C)〉
= |k (0)〉 ,

or in other words,
ˆ* † ˆ* = ˆ� , or ˆ* † = ˆ* −1

. Such an operator
ˆ� that

satisfies
ˆ�† ˆ� = ˆ� is said to be unitary.

Let {|k=〉} ∈ H be an eigenbasis of the Hamiltonian
ˆ� , i.e.,

ˆ� |k=〉 =
_= |k=〉, where {_=}∞==0

∈ R. We can expand the initial state in this

basis as |k (0)〉 = ∑∞
==0

2= |k=〉, where 2= = 〈k= |k 〉 ∈ C, and thus

write the state at time C as

|k (C)〉 = e
−8 ˆ�C/ℏ |k (0)〉 (5.7)

=

( ∞∑
==0

(
−i

ˆ�C/ℏ
)=

=!

) ( ∞∑
<=0

2< |k<〉
)

=

∞∑
<=0

( ∞∑
==0

2<

(
−i

ˆ�C/ℏ
)=

=!

|k<〉
)

=

∞∑
<=0

e
−i_<C/ℏ2< |k<〉

=

∞∑
<=0

2<e
−i_<C/ℏ |k<〉 .
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5.3 Case of temporally dependent
Hamiltonian

Let now the Hamiltonian
ˆ� = ˆ� (C) be time-dependent. The

Schrödinger equation still holds:

iℏmC |k (C)〉 = ˆ� (C) |k (C)〉 , (5.8)

and the evolution is unitary. Thus ∃{ ˆ* (C)} ∈ L(H) s.t.

ˆ* (C) |k (0)〉 = |k (C)〉 , ∀ |k (C)〉 ∈ H (5.9)

⇒ iℏmC
(

ˆ* (C) |k (0)〉
)
= ˆ� (C)

(
ˆ* (C) |k (0)〉

)
(5.10)

⇒ iℏmC ˆ* (C) = ˆ� (C) ˆ* (C) . (5.11)

This is equivalent to the Schrödinger equation.

Exercise

Build
ˆ* (C) for ˆ� (C).

5.4 Properties of unitary operators

For any two unitary operators
ˆ*1 and

ˆ*2, we have(
ˆ*1

ˆ*2

)†
= ˆ*

†
2

ˆ*
†
1
= ˆ* −1

2

ˆ* −1

1
=

(
ˆ*1

ˆ*2

)−1

. (5.12)

That is,
ˆ*1

ˆ*2 is also unitary.

Let |k 〉 , |q〉 ∈ H and
ˆ* † = ˆ* −1 ∈ L(H). We define

|k ′〉 = ˆ* |k 〉 and |q ′〉 = ˆ* |q〉 , (5.13)

for which we have

〈k |q〉 = 〈k | ˆ� |q〉 = 〈k | ˆ* −1 ˆ* |q〉 (5.14)

= 〈k | ˆ* † ˆ* |q〉 =
(

ˆ* |k 〉 , ˆ* |q〉
)

= 〈k ′ |q ′〉 .

Unitary operators can be considered as rotations.
2

2: sometimes reflections as well

5.5 Qubit

A qubit can refer either to a physical system or to a mathematical

construction. In either case, it is modeled by a a two-level quantum

system as follows:
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3: Ground and excited
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Figure 5.1: Non-linear harmonic os-

cillator with a Josephson junction (JJ).

Notice that the gap ℏl
01

≠ ℏl
12
, i.e.,

the energy states are non-equidistant.

Figure from Ref. [1].

LetH2 = span{| ˜0〉 , | ˜1〉}, where 〈˜0| ˜0〉 = 1 = 〈˜1| ˜1〉.

H2 fully describes all possible states of the qubit where

|k 〉 ∈ H2 and ‖ |k 〉 ‖ = 1. (5.15)

Thus the qubit Hamiltonian
ˆ�@ has just two eigenvalues Y1 ≤ Y2 ∈ R

and the corresponding eigenvectors are |g〉 and |e〉, respectively.3

Thus,

ˆ�@ = Y1 |g〉〈g| + Y2 |e〉〈e| (5.16)

=
Y

2

(
− |g〉〈g| + |e〉〈e|

)
+ (Y1 + Y2)

2

|g〉〈g| + (Y1 + Y2)
2

|e〉〈e|

=
Y

2

(
− |g〉〈g| + |e〉〈e|

)
+ Y1 + Y2

2

ˆ�︸   ︷︷   ︸
We can disregard this since it just equally changes the phase of all |k 〉 ∈ H2

where Y = Y2 − Y1.

Thus
ˆ�@ = − Y

2

(
|g〉〈g| − |e〉〈e|

)
.

We can define the qubit states |0〉 B |g〉 and |1〉 B |e〉.

Thus,

ˆ�@ = − Y
2

f̂z, f̂z = |0〉〈0| − |1〉〈1| (5.17)

=̂

[
− Y

2
0

0 + Y
2

]
.

The temporal evolution is given by

|k (C)〉 = e
−i

ˆ�@C/ℏ |k (0)〉 , |k (0)〉 = 20 |0〉 + 21 |1〉 (5.18)

= e
+i Y

2
f̂zC/ℏ |k (0)〉

= e
i
Y
2
C/ℏ20 |0〉 + e

−i
Y
2
C/ℏ21 |1〉 .

5.6 How to set up a qubit from a physical
system

Very few physical systems are qubits. However, it is possible to take

some physical systems and confine the dynamics to a subspace

of two states. For example, a spin is a natural two-level system,

but confined (for example in atoms). Another example is a non-

linear system where Y0 < Y1 < Y2 · · · are eigenvalues of
ˆ� s.t.

Y1 − Y0 ≠ Y2 − Y1. See Fig. 5.1.
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Figure 5.2: Bloch sphere representa-

tion [2].

5.7 Pauli operators

Definition 5.7.1 The Pauli operators are

f̂z = |0〉〈0| − |1〉〈1| (5.19)

f̂x = |0〉〈1| + |1〉〈0| (5.20)

f̂y = −i |0〉〈1| + i |1〉〈0| (5.21)

Properties

The Pauli operators have a number of interesting properties:

f̂2

U = ˆ� ∀U ∈ {x, y, z} (5.22)

f̂†U = f̂U ∀U (5.23)

[f̂8 , f̂ 9 ] =
∑

:∈{x,y,z}
2if̂:Y8 9: , ∀8, 9 ∈ {x, y, z}, (5.24)

where

Y8 9: =


+1 if (8, 9, :) ∈ {(x, y, z), (z, x, y), (y, z, x)},
−1 if (8, 9, :) ∈ {(y, x, z), (z, y, x), (x, z, y)},

0 otherwise,

(5.25)

is the Levi-Civita symbol.

Definition 5.7.2

f̂− = |0〉〈1| (5.26)

f̂+ = (f̂−)† = |1〉〈0| . (5.27)

Exercise

Show that

e
ii ®0 · ˆ®f = ˆ� cosi + i ®0 · ˆ®f sini,

where ®0 ∈ R3
, ‖ ®0‖ = 1 and ®0 · ˆ®f = 0xf̂x + 0yf̂y + 0yf̂z.

5.8 Bloch sphere

Definition 5.8.1 A qubit state can always be expressed as

|k 〉 = cos

\

2

|0〉 + e
ii

sin

\

2

|1〉 , (5.28)

where i is the azimuthal angle and \ is the polar angle.
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Note that since a global phase of the state e
iU
does not affect any

measurement outcome, i.e.,

〈k | ˆ�|k 〉 = 〈k | ˆ�e
−iU

e
iU |k 〉 = 〈k |e−iU ˆ�e

iU |k 〉 = 〈eiUk | ˆ�e
iU |k 〉 ,

(5.29)

we can always choose 20 ∈ R in |k 〉 = 20 |0〉 + 21 |1〉.

Thus, for each state there are unique \ ∈ [0, c) and i ∈ [0, 2c)
which correspond to a point on a unit sphere as shown in Fig. 5.2.

Exercise

Show that
ˆ* (C) are rotations of the Bloch vectors.



Lecture 6 6
Last lecture from Mikko.

6.1 Intended learning outcomes
I Apply tensor product to construct a quantum register of #

qubits

I Identify the constituents of a quantum algorithm

I Apply the commutator to identify conserved quantities

6.2 Tunable Hamiltonian for quantum
gates

Let span {|0〉 , |1〉} = H2 and assume that control over the Hamilto-

nian s.t.
ˆ� = Y0®0(C) · ˆ®f , where ®0 ∈ R3, ‖ ®0‖ = 1, and Y0 ∈ R has units

of energy.

Thus any unitary evolution
1

1: An unitary operation on a qubit is

referred to as a single-qubit gate

ˆ* = ˆ� cos\ + i
®1 · ˆ®f sin\ can be

implemented, for example, by a control sequence

®0(C) =


0, C < 0

−Y0®1, 0 ≤ C ≤ \ℏ/Y0
0, \ℏ/Y0 < C

. (6.1)

There are many other ways of course. Note that there is also a way

to use

ˆ� = − Y
2

f̂z (6.2)

and apply a field ®�ex(C) = Ω
2
f̂x sin (lC + q), where l = Y

ℏ
. That will

result in so-called Rabi oscillations to be discussed later.

6.3 Single-qubit gates: examples

I The NOT gate corresponds to f̂x = |0〉〈1| + |1〉〈0| =̂
[
0 1

1 0

]
.

I Hadamardgate corresponds to
ˆ�g = 1√

2

(f̂x + f̂z) =̂ 1√
2

[
1 1

1 −1

]
.

I Phase flip corresponds to f̂z = |0〉〈0| − |1〉〈1| =̂
[
1 0

0 −1

]
.
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Exercise

Find 0̂(C) implementing:

ˆ�gf̂x ˆ�g = f̂z

ˆ�
†
g
= ˆ�g = ˆ�−1

g
.

6.4 Qubit measurement

Let |k 〉 ∈ H2 be a qubit state. Thus we may write |k 〉 = 20 |0〉 +
21 |1〉, where 20, 21 ∈ C s.t. |20 |2 + |21 |2 = 1. Thus the measurement

probabilities are given by

%0 = |〈0|k 〉|2 = |20 |2 (6.3)

%1 = |〈1|k 〉|2 = |21 |2 = 1 − |20 |2 (6.4)

After applying a quantum gate
ˆ* on |k 〉 the probabilities are given

by

%0 =
��〈0| ˆ* |k 〉��2 = 〈k | ˆ* † |0〉〈0| ˆ* |k 〉 =

��〈˜0|k 〉��2 , (6.5)

where | ˜0〉 = ˆ* † |0〉. Similarly for %1 =
��〈1| ˆ* |k 〉��2 =

��〈˜1|k 〉��2.
6.5 2-qubit system

On the tensor product

The tensor product (or Kronecker

product) is a bilinear composition

of the twovector spaces (withmin-

imal constraints).

The Hilbert spaceH4 = H (1)
2
⊗ H (2)

2
of a system composed of two

qubits is 4-dimensional. The symbol ⊗ denotes the tensor product

of Hilbert spaces or vectors. Single-qubit operators are of the form

ˆ�1 ⊗ ˆ� and ˆ� ⊗ ˆ�2, where
ˆ�1 ∈ L(H (1)

2
) and ˆ�2 ∈ L(H (2)

2
).

Let
ˆ�⊗ ˆ� = ˆ� ∈ L(H4) and ˆ�⊗ ˆ� = ˆ� ∈ L(H4). From the properties

of the tensor product, it follows that

ˆ� ˆ� =
(

ˆ� ⊗ ˆ�
) (

ˆ� ⊗ ˆ�
)
=

(
ˆ� ˆ�

)
⊗

(
ˆ� ˆ�

)
. (6.6)

Definition 6.5.1 We construct the basis for the two-qubit Hilbert
spaceH4 as

|00〉 B |0〉 ⊗ |0〉 (6.7)

|01〉 B |0〉 ⊗ |1〉 (6.8)

|10〉 B |1〉 ⊗ |0〉 (6.9)

|11〉 B |1〉 ⊗ |1〉 , (6.10)
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where {|0〉 , |1〉} is an orthonormal basis for H (1)
2

and H (2)
2

, respec-
tively.

Thus for |k 〉 ∈ H4, we may write

|k 〉 =
3∑
:=0

2: |:〉 (6.11)

= 20 |00〉 + 21 |01〉 + 22 |10〉 + 23 |11〉
= 20 |0〉 + 21 |1〉 + 22 |2〉 + 23 |3〉

where |:〉 B |:1:2〉, where :1:2 is a binary representation of : .

Additionally, for
ˆ� = ˆ� ⊗ ˆ� ∈ L(H4), we have

ˆ� |k 〉 = ˆ�

3∑
:=0

2: |:〉 =
3∑
:=0

2: ˆ� |:〉 (6.12)

=

3∑
:=0

2: ˆ� ⊗ ˆ� |:〉︸︷︷︸
∈H4

=

3∑
:=0

2: ˆ� |:1〉︸︷︷︸
∈H (1)

2

⊗ ˆ� |:2〉︸︷︷︸
∈H (2)

2

.

6.6 Examples of two-qubit gates

Controlled NOT (CNOT) gate where qubit 1 is the control qubit

and qubit 2 is the target qubit corresponds to

ˆ�
(1,2)
NOT

= |0〉〈0| ⊗ ˆ� + |1〉〈1| ⊗ f̂x (6.13)

=̂


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

[
� 0

0 fx

]
.

Exercise

I Construct the above matrix representations

I Express CNOT that has qubit 1 as the target qubit

6.7 =-qubit system

For a systemwith = qubits, we usually define # B 2
= = dim {H2

= },
and we have the following properties:
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I H2
= = H (1)

2
⊗ H (2)

2
⊗ · · · ⊗ H (=)

2

I |k 〉 = ∑
2
=−1

:=0
2: |:〉 = 20 |00 · · · 0

= zeroes

〉 + 21 | 0 · · · 01

=−1 zeroes

〉 + · · · , where

again |:〉 means |:1:2 . . . :=〉, where :1:2 . . . := is : written in

binary

I ˆ� ⊗ · · · ⊗ ˆ�

<−1

⊗ ˆ�⊗ ˆ� ⊗ · · · ⊗ ˆ�

=−<
is a single-qubit operator for qubit<.

6.8 Quantum algorithms for = qubits

In general, a quantum algorithm is a procedure consisting of the

following steps:

1. Initialize qubits to |0〉.2 2: Not necessarily all qubits

2. Apply a desired =-qubit gate U.
3

3: Can be constructed from single

and two-qubit gates
3. Measure qubits.

4

4: Not necessarily all qubits
4. Use measurement data and go to 1, unless algorithm fin-

ished.
5

5: In the simplest case one goes only

once through 1.→ 4. and initializes

and measures all qubits in 1. and 3.,

respectively.

Exercise

Deustch algorithm

6.9 Entanglement for two qubits

Definition 6.9.1 A quantum state of two qubits is defined to be
entangled iff it cannot be represented as a product of two single-qubit
states.

Thus ∀ |k 〉 ∈ H4 that are not entangled ∃ |k1〉 ∈ H (1)
2

and |k2〉 ∈
H (2)

2
s.t.

|k 〉 = |k1〉 ⊗ |k2〉 (6.14)

Examples of so-called maximally entangled states are Bell states

|Φ±〉 = 1

√
2

( |00〉 ± |11〉) (6.15)

|Ψ±〉 = 1

√
2

( |01〉 ± |10〉) (6.16)

6.10 Commuting operators

Let
ˆ�, ˆ� ∈ L(H) be Hermitian operators with [ ˆ�, ˆ�] = 0. In this

case, it can be shown that there exists a complete eigenbasis of
ˆ�

that is also an eigenbasis of
ˆ�.
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Especially if [ ˆ�, ˆ� (C)] = 0, ∀C , the eigenvalues of ˆ� are referred to

as conserved quantities since we have

ˆ� |k (C)〉 = ˆ� ˆ* (C) |k (0)〉 = ˆ* (C) ˆ� |k (0)〉 (6.17)

= _ ˆ* (C) |k (0)〉 = _ |k (C)〉 ,

where we have assumed that
ˆ� |k (0)〉 = _ |k (0)〉, i.e., we start from

an eigenstate of
ˆ�.
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