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Python programming - Learning resources 
 
There are many online resources for learning       
Python. They are usually organized as step-by-step       
text or video tutorials. Some of them even offer a          
browser-based IDE (Integrated Development    
Environment), basically an editor that allows you to        
directly execute Python code (like Codecademy).      
Rhino 5 also comes with Python editor pre installed.  
 
 
Codecademy 
 
“Perfect for absolute beginners. Their free code       
tutorials are very popular, and for good reason. In         
this tutorial, you'll get a good idea of what it's like to            
code Python by having some free, hands-on       
lessons where you actually get to write some code.” 
 
https://www.codecademy.com/learn/learn-python 
 
Google's Python Class 
 
“Great resource for someone looking to get a        
professional take on the learning the language. The        
class isn't for complete coding beginners, but those        
with a little coding knowledge will be able to learn          
Python using the videos, lectures, written materials,       
and code exercises that Google provides in this        
course.” 
 
https://developers.google.com/edu/python/ 
 
A Byte of Python 
 
“Free book on programming using the Python       
language. It serves as a tutorial or guide to the          
Python language for a beginner audience. If all you         
know about computers is how to save text files,         
then this is the book for you.” 
 
Download PDF 
https://www.gitbook.com/book/swaroopch/byte-of-p
ython/details 
 
Web version  
https://python.swaroopch.com/ 
 
 
 
 
 

TutsPlus 
 
“This TutsPlus tutorial provides you with dozens of        
different resources that can be used to learn        
Python, and it even gives you a syllabus so you can           
be sure to know what resource to use, and at which           
point in your coding journey you should use it.         
Perfect for both coding newbies and code       
veterans.” 
 
https://code.tutsplus.com/articles/the-best-way-to-le
arn-python--net-26288 
 
Plethora Project 
 
“Plethora-Project.com is an initiative to accelerate      
computational literacy in the frame of architecture       
and design. It aligns with the "show me your         
screens" motto of the TopLap live-coding group       
attempting to get rid of Obscurantism in digital        
design. Since 2011, the Plethora Project has been        
posting over 200 video tutorials on vimeo and        
youtube. The videos are a contribution to the        
community that provided many of the open source        
tools available to the public. The tutorials cover        
issues of programing and computational design      
issues in a diverse range of software.” 
 
Rhino - Python programming 
https://www.plethora-project.com/education/2017/5/
31/rhino-python-programming 
 
Rhino - Nurbs modeling 
https://www.plethora-project.com/education/2017/5/
31/rhino-nurbs-modeling 
 
Rhino - Grasshopper 
https://www.plethora-project.com/education/2017/5/
31/rhino-grasshopper 
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Python programming language 
(referenced from Wikipedia) 
 
 
On the origins of Python, it’s creator Guido van         
Rossum wrote in 1996: 
 

“...I chose Python as a working title for the         
project, being in a slightly irreverent mood       
(and a big fan of Monty Python's Flying        
Circus).” 

 
The language's core philosophy is summarized in       
the document The Zen of Python, which includes        
aphorisms such as: 

 
● Beautiful is better than ugly 
● Explicit is better than implicit 
● Simple is better than complex 
● Complex is better than complicated 
● Readability counts 

 
Python is a widely used high-level programming       
language for general-purpose programming,    
created by Guido van Rossum and first released in         
1991. An interpreted language, Python has a       
design philosophy that emphasizes code readability      
(notably using whitespace indentation to delimit      
code blocks rather than curly brackets or       
keywords), and a syntax that allows programmers       
to express concepts in fewer lines of code than         
might be used in languages such as C++ or Java.          
Python features a dynamic type system and       
automatic memory management. It supports     
multiple programming paradigms, including    
object-oriented, imperative, functional and    
procedural, and has a large and comprehensive       
standard library. 
 
A common neologism in the Python community is        
pythonic, which can have a wide range of        
meanings related to program style. To say that code         
is pythonic is to say that it uses Python idioms well,           
that it is natural or shows fluency in the language,          
that it conforms with Python's minimalist      
philosophy and emphasis on readability. In      
contrast, code that is difficult to understand or reads         
like a rough transcription from another programming       
language is called unpythonic. 
 
 
 
 

Object-oriented programming (OOP)  
 
Programming paradigm based on the concept of       
"objects", which may contain data, in the form of         
fields, often known as attributes; and code, in the         
form of procedures, often known as methods. A        
feature of objects is that an object's procedures can         
access and often modify the data fields of the object          
with which they are associated (objects have a        
notion of "this" or "self"). In OOP, computer        
programs are designed by making them out of        
objects that interact with one another. There is        
significant diversity of OOP languages, but the most        
popular ones are class-based, meaning that      
objects are instances of classes, which typically       
also determine their type. 
 
Imperative programming 
 
Programming paradigm that uses statements that      
change a program's state. Computer program      
stores data in variables, which represent storage       
locations in the computer's memory. The      
contents of these memory locations, at any given        
point in the program's execution, is called the        
program's state. In much the same way that the         
imperative mood in natural languages expresses      
commands, an imperative program consists of      
commands for the computer to perform. Imperative       
programming focuses on describing how a      
program operates. The term is often used in        
contrast to declarative programming, which focuses      
on what the program should accomplish without       
specifying how the program should achieve the       
result. 
 
Interpreted language 
 
An interpreted language is a programming language       
for which most of its implementations execute       
instructions directly, without previously    
compiling a program into machine-language     
instructions. The interpreter executes the program      
directly, translating each statement into a sequence       
of one or more subroutines already compiled into        
machine code. 
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Coordinate systems and color spaces 
(referenced from Wikipedia) 
 
 
Right-hand rule 
 
In mathematics and physics, the right-hand rule is a         
common mnemonic (a system such as a pattern of         
letters, ideas, or associations which assists in       
remembering something) for understanding    
orientation conventions for vectors in three      
dimensions. Most of the various left and right-hand        
rules arise from the fact that the three axes of          
3-dimensional space have two possible     
orientations. This can be seen by holding your        
hands outward and together, palms up, with the        
fingers curled. If the curl of your fingers represents         
a movement from the first or X axis to the second or            
Y axis then the third or Z axis can point either along            
your left thumb or right thumb. Left and right-hand         
rules arise when dealing with coordinate axes,       
rotation, spirals, electromagnetic fields, mirror     
images and enantiomers in mathematics and      
chemistry. 
 

 
 
Note that the convention of assigning the index        
finger to the first axis (rather than the thumb)         
corresponds with the convention of finger-counting      
of the United Kingdom and United States, whereas        
for Continental Europeans, the thumb     
represents the first digit to be counted; the        
"natural" assignment of fingers to axes that leads to         
a "right"-handed rule would likewise differ in many        
other cultures. 
 
 
 
 
 
 
 
 
 

Quadrant 
 

 
 
The axes of a two-dimensional coordinate      
system divide the plane into four infinite regions,        
called quadrants, each bounded by two half-axes.       
These are often numbered from 1st to 4th and         
denoted by Roman numerals: I (where the signs of         
the (x,y) coordinates are (+,+), II (−,+), III (−,−), and          
IV (+,−). When the axes are drawn according to the          
mathematical custom, the numbering goes     
counter-clockwise starting from the upper right      
("northeast") quadrant. 
 
Octant 
 

 
 
One of the eight divisions of a Euclidean        
three-dimensional coordinate system defined by     
the signs of the coordinates. It is similar to the          
two-dimensional quadrant and the one-dimensional     
ray. A convention for naming an octant is to give its           
list of signs, e.g. ( + - - ) or ( - + - ). Octant ( + + + )                     
is sometimes referred to as the first octant, although         
similar ordinal name descriptors are not defined for        
the other seven octants. The advantages of using        
the ( + - - ) notation are its unambiguousness, and           
extensibility for higher dimensions. 
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Color space 
 
Specific organization of colors. In combination      
with physical device profiling, it allows for       
reproducible representations of color, in both analog       
and digital representations. A color space may be        
arbitrary, with particular colors assigned to a set of         
physical color swatches and corresponding     
assigned names or numbers (Pantone collection),      
or structured mathematically (Natural Color System      
and others). A color model is an abstract        
mathematical model describing the way colors can       
be represented as tuples of numbers, for example        
triples in RGB (red-green-blue) or quadruples in       
CMYK (cyan-magenta-yellow-black). 
 

  
 
RGB color space represented as a 3D cube  
 
In 1802, Thomas Young postulated the existence       
of three types of photoreceptors (now known as        
cone cells) in the eye, each of which was sensitive          
to a particular range of visible light. Hermann von         
Helmholtz developed the Young–Helmholtz theory     
further in 1850 - that the three types of cone          
photoreceptors could be classified as     
short-preferring (blue), middle-preferring (green),    
and long-preferring (red), according to their      
response to the wavelengths of light striking the        
retina. The relative strengths of the signals       
detected by the three types of cones are        
interpreted by the brain as a visible color.  
 
 
 
 
 
 
 
 
 
 
 

RGB color model 
 

 
 
Additive color model in which red, green and        
blue light are added together in various ways to         
reproduce a broad array of colors. The main        
purpose of the RGB color model is for the sensing,          
representation and display of images in electronic       
systems, such as televisions and computers,      
though it has also been used in conventional        
photography. 
 
CMYK color model 
 

 
 
Subtractive color model, used in color printing,       
and is also used to describe the printing process         
itself. CMYK refers to the four inks used in some          
color printing: cyan, magenta, yellow, and key       
(black). 

The "K" in CMYK stands for key because in         
four-color printing, cyan, magenta, and yellow      
printing plates are carefully keyed, or aligned, with        
the key of the black key plate. Black is often used           
as outline and printed first. 
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Vectors 
(referenced from Wikipedia) 
 
 
Euclidean vectors 
 
In mathematics, physics, and engineering, a      
Euclidean vector (sometimes called a geometric or       
spatial vector, or—as here—simply a vector) is a        
geometric object that has magnitude (or length)       
and direction. Vectors can be added to other        
vectors according to vector algebra. A Euclidean       
vector is frequently represented by a line segment        
with a definite direction, or graphically as an arrow,         
connecting an initial point A with a terminal point B          
and denoted by  
 
Vectors only contain information about direction      
and magnitude. In that sense, they don’t have a         
fixed position in space and can be freely “moved”         
around. Vectors in three dimensions require three       
coordinates (vector components) to be uniquely      
defined. Point vectors are vectors which point from        
the origin of the coordinate system to the point with          
same coordinates as the components of the       
point-vector. This makes point-vector’s and point’s      
notation interchangeable. 
 
Basic properties of vectors 
 
Equality - Two vectors are said to be equal if they           
have the same magnitude and direction.      
Equivalently they will be equal if their coordinates        
are equal. 
 
Opposite, parallel, and antiparallel vectors - Two       
vectors are opposite if they have the same        
magnitude but opposite direction. Two vectors are       
parallel if they have the same direction but not         
necessarily the same magnitude, or antiparallel if       
they have opposite direction but not necessarily the        
same magnitude. 
 
Length - Each vector has a length which can be          
calculated using Euclidean norm formula: 
 

 
 
Euclidean norm works for vectors in any number of         
dimensions if we add squares of all components        
and calculate the square root of the sum.        

Calculating distances in higher-dimensional spaces     
has uses in modern data classification methods. 
Unit vector - A unit vector is any vector with a           
length of one. Normally unit vectors are used        
simply to indicate direction. A vector of arbitrary        
length can be divided by its length to create a unit           
vector. This is known as normalizing a vector. 
 
Zero vector - Vector with length zero. Unlike any         
other vector, it has an arbitrary or indeterminate        
direction, and cannot be normalized. 
 
Vector addition - Vectors can be added to each         
other. Graphically, this is done by putting the start         
point of one on the end point of the other and           
drawing a vector from the start of the first to the end            
of the second vector. The result is always another         
vector. 
 

 
 
Vector subtraction - Vectors can be subtracted       
from each other. Graphically, one vector can be        
subtracted from the other by drawing a vector from         
the end of the second to the end of the first vector.            
The result is always another vector. 
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Scalar multiplication - Vector can be scaled in        
length by multiplying it with a skalar (a normal         
number, not another vector) in which case the        
direction stays the same. If the scalar is negative,         
the vector will flip direction. The result is always         
another vector. 

 
 
Cross product - The cross product (also called the         
vector product or the outer product) of any two         
vectors is a vector perpendicular to both of them         
which completes a right-handed system. The      
right-handedness constraint is necessary because     
there exist two unit vectors that are perpendicular to         
any two vectors. Cross product can always be        
found unless two vectors have the same unit        
vectors or if one of them is a zero-vector.         
Otherwise, the result is always another vector. 
 

 
 
Dot product - The dot product of two vectors         
(sometimes called the inner product, or, since its        
result is a scalar, the scalar product) can be         
defined as the sum of the products of the         
components of each vector as: 
 
 
 
 
 
 
 
 
 
 

Vector space 
 
Collection of objects called vectors, which may       
be added together and multiplied ("scaled") by       
numbers, called scalars. Scalars are often taken to        
be real numbers, but there are also vector spaces         
with scalar multiplication by complex numbers,      
rational numbers, or generally any field. Euclidean       
vectors are an example of a vector space. They         
represent physical quantities such as forces: any       
two forces (of the same type) can be added to yield           
a third, and the multiplication of a force vector by a           
real multiplier is another force vector. In the same         
vein, but in a more geometric sense, vectors        
representing displacements in the plane or in       
three-dimensional space also form vector spaces.      
Vectors in vector spaces do not necessarily have to         
be arrow-like objects as they appear in the        
mentioned examples: vectors are regarded as      
abstract mathematical objects with particular     
properties, which in some cases can be visualized        
as arrows. 
 

 
 
Possible representation of a six-dimensional vector      
space, where in addition to direction (three       
components) every vector also has a color (three        
components in RGB color space) totaling six       
numbers that uniquely describe a given vector 
 
Vector spaces are the subject of linear algebra and         
are well characterized by their dimension, which,       
roughly speaking, specifies the number of      
independent directions in the space. Today,      
vector spaces are applied throughout mathematics,      
science and engineering, and furnish an abstract,       
coordinate-free way of dealing with geometrical      
and physical objects such as tensors. 
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Systems of randomness 
(referenced from Wikipedia) 
 
 
Random number generation 
 
Generation of a sequence of numbers or symbols        
that cannot be reasonably predicted better than by        
a random chance, usually through a hardware       
random-number generator (RNG). Various    
applications of randomness have led to the       
development of several different methods for      
generating random data, of which some have       
existed since ancient times, among whose ranks       
are well-known "classic" examples, including the      
rolling of dice, coin flipping, the shuffling of playing         
cards, the use of yarrow stalks (for divination) in the          
I Ching, as well as countless other techniques.        
Because of the mechanical nature of these       
techniques, generating large numbers of sufficiently      
random numbers (important in statistics) required a       
lot of work and/or time. Thus, results would        
sometimes be collected and distributed as random       
number tables. 
 
Random number generators have applications in      
gambling, statistical sampling, computer simulation,     
cryptography, completely randomized design, and     
other areas where producing an unpredictable      
result is desirable. Generally, in applications having       
unpredictability as the paramount, such as in       
security applications, hardware generators are     
generally preferred over pseudo-random    
algorithms, where feasible. Random number     
generators are very useful in developing Monte       
Carlo method simulations, as debugging is      
facilitated by the ability to run the same sequence of          
random numbers again by starting from the same        
random seed. They are also used in cryptography –         
so long as the seed is secret. Sender and receiver          
can generate the same set of numbers       
automatically to use as keys. Weaker forms of        
randomness are used in hash algorithms and in        
creating amortized searching (method for     
analyzing a given algorithm's time complexity, or       
how much of a resource, especially time or        
memory, it takes to execute) and sorting       
algorithms. 
 
 
 
 

 
Brownian motion 
 
Random motion of particles suspended in a fluid        
(a liquid or a gas) resulting from their collision with          
the fast-moving atoms or molecules in the gas or         
liquid. 

This transport phenomenon is named after the       
botanist Robert Brown. In 1827, while looking       
through a microscope at particles trapped in cavities        
inside pollen grains in water, he noted that the         
particles moved through the water; but he was not         
able to determine the mechanisms that caused this        
motion. Atoms and molecules had long been       
theorized as the constituents of matter, and Albert        
Einstein published a paper in 1905 that explained        
in precise detail how the motion that Brown had         
observed was a result of the pollen being moved         
by individual water molecules. This explanation      
of Brownian motion served as convincing evidence       
that atoms and molecules exist, and was further        
verified experimentally by Jean Perrin in 1908. 
 

 
 
From the book of Jean Baptiste Perrin, Les Atomes 
 
The direction of the force of atomic bombardment is         
constantly changing, and at different times the       
particle is hit more on one side than another,         
leading to the seemingly random nature of the        
motion. Brownian motion is among the simplest of        
the continuous-time stochastic (or probabilistic)     
processes, and it is a limit of both simpler and          
more complicated stochastic processes (see     
random walk and Donsker's theorem). This      
universality is closely related to the universality of        
the normal distribution. 
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Monte Carlo method, voxels, cellular automata      
and transformation matrices 
(referenced from Wikipedia) 
 
 
Monte Carlo method 
 
A broad class of computational algorithms that rely        
on repeated random sampling to obtain numerical       
results. Their essential idea is using randomness to        
solve problems that might be deterministic in       
principle. They are often used in physical and        
mathematical problems and are most useful when it        
is difficult or impossible to use other approaches.        
Monte Carlo methods are mainly used in three        
distinct problem classes: optimization, numerical     
integration, and generating draws from a probability       
distribution. In physics-related problems, Monte     
Carlo methods are useful for simulating systems       
with many coupled degrees of freedom, such as        
fluids, disordered materials, strongly coupled solids,      
and cellular structures. 
 
In principle, Monte Carlo methods can be used to         
solve any problem having a probabilistic      
interpretation. By the law of large numbers,       
integrals described by the expected value of some        
random variable can be approximated by taking the        
empirical mean of independent samples of the       
variable. Monte Carlo methods vary, but tend to        
follow a particular pattern: 
 

1. Define a domain of possible inputs 
2. Generate inputs randomly from a     

probability distribution over the domain 
3. Perform a deterministic computation on     

the inputs 
4. Aggregate the results 

 
Uses of Monte Carlo methods require large       
amounts of random numbers, and it was their use         
that spurred the development of pseudorandom      
number generators, which were far quicker to use        
than the tables of random numbers that had been         
previously used for statistical sampling. 
 
 
 
 
 
 

An early variant of the Monte Carlo method can be          
seen in the Buffon's needle experiment, in which π         
can be estimated by dropping needles on a floor         
made of parallel and equidistant strips. The modern        
version of the Markov Chain Monte Carlo method        
was invented in the late 1940s by Stanislaw Ulam,         
while he was working on nuclear weapons projects        
at the Los Alamos National Laboratory. Immediately       
after Ulam's breakthrough, John von Neumann      
understood its importance and programmed the      
ENIAC computer to carry out Monte Carlo       
calculations. 
 

 
 
A example of Buffon's needle experiment to       
estimate π, yielding the value of 34/11 ≈ 3.1 based          
on 17 throws 
 
Markov process, named after the Russian      
mathematician Andrey Markov, is a stochastic      
process that satisfies the Markov property      
(sometimes characterized as "memorylessness").    
Roughly speaking, a process satisfies the Markov       
property if one can make predictions for the future         
of the process based solely on its present state. In          
such a process, future and past states are        
independent. This is a necessary requirement for       
Monte Carlo method. A simple coin toss is an         
example of such a Markov process, as is Brownian         
motion, due to the fact that the displacement of the          
particle does not depend on its past displacements. 
 
 
 
 
 
 

 
9 
 

\     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \  



 
/     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /  

 

 
 

Approximating the value of π with Monte Carlo 
 
Consider a circle inscribed in a unit square. Given         
that the circle and the square have a ratio of areas           
that is π/4, the value of π can be approximated          
using a Monte Carlo method: 
 

1. Draw a square, then inscribe a circle within        
it 

2. Uniformly scatter objects of uniform size      
over the square 

3. Count the number of objects inside the       
circle and the total number of objects 

4. The ratio of the inside-count and the       
total-sample-count is an estimate of the      
ratio of the two areas, which is π/4.        
Multiply the result by 4 to estimate π 

 

 
 
1000 point Monte Carlo approximation of π =        
3.1960 
 
In this procedure the domain of inputs is the square          
that circumscribes the circle. We generate random       
inputs by scattering grains over the square then        
perform a computation on each input (test whether        
it falls within the circle). Finally, we aggregate the         
results to obtain our final result, the approximation        
of π. There are two important points: Firstly, if the          
grains are not uniformly distributed, then the       
approximation will be poor. Secondly, there should       
be a large number of inputs. The approximation is         
generally poor if only a few grains are randomly         
dropped into the whole square. On average, the        
approximation improves as more grains are      
dropped. 
 
 

Voxels 
 
A value on a regular grid in three-dimensional        
space. The word voxel originated by analogy with        
the word "pixel", with vo representing "volume" and        
el representing "element". As with pixels in a        
bitmap, voxels themselves do not typically have       
their position (their coordinates) explicitly encoded      
along with their values. Instead, rendering systems       
infer the position of a voxel based upon its position          
relative to other voxels (i.e., its position in the data          
structure that makes up a single volumetric image).  
 

  
 
A voxel represents a value on a regular grid in          
three-dimensional space 
 
In contrast to pixels and voxels, points and        
polygons are often explicitly represented by the       
coordinates of their vertices. A direct consequence       
of this difference is that polygons can efficiently        
represent simple 3D structures with lots of empty or         
homogeneously filled space, while voxels excel at       
representing regularly sampled spaces that are      
non-homogeneously filled. Common uses of     
voxels include volumetric imaging in medicine and       
representation of terrain in games and simulations. 
 
Voxel data point can consist of a single piece of          
data, such as an opacity, or multiple pieces of data,          
such as a color in addition to opacity. A voxel          
represents only a single point on this grid, not a          
volume; the space between each voxel is not        
represented in a voxel-based dataset. Depending      
on the type of data and the intended use for the           
dataset, this missing information may be      
reconstructed and/or approximated, e.g. via     
interpolation. 
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Cellular automaton 
 
A discrete model studied in computer science,       
mathematics, physics, complexity science,    
theoretical biology and microstructure modeling.     
Cellular automata are also called cellular spaces,       
tessellation automata, homogeneous structures,    
cellular structures, tessellation structures, and     
iterative arrays.  

A cellular automaton consists of a regular grid of         
cells, each in one of a finite number of states,          
such as on and off. The grid can be in any finite            
number of dimensions. For each cell, a set of cells          
called its neighborhood is defined relative to the        
specified cell. An initial state (time t = 0) is selected           
by assigning a state for each cell. A new generation          
is created (advancing t by 1), according to some         
fixed rule that determines the new state of each cell          
in terms of the current state of the cell and the           
states of the cells in its neighborhood. Typically, the         
rule for updating the state of cells is the same for           
each cell and does not change over time, and is          
applied to the whole grid simultaneously. 
 

 
 
The Game of Life is a cellular automaton devised by          
the British mathematician John Horton Conway in       
1970 
 
The concept was originally discovered in the 1940s        
by Stanislaw Ulam and John von Neumann while        
they were contemporaries at Los Alamos National       
Laboratory. While studied by some throughout the       
1950s and 1960s, it was not until the 1970s and          
Conway's Game of Life, a two-dimensional cellular       
automaton, that interest in the subject expanded       
beyond academia. 
 

 
 
Taxonomy of Life creatures, a rule set for Conway’s         
Game of Life from 1970 
 
In the 1970s a two-state, two-dimensional cellular       
automaton named Game of Life became widely       
known, particularly among the early computing      
community. Invented by John Conway, its rules are        
as follows: 
 

1. n < 2, live - any live cell with fewer than           
two live neighbours dies, as if caused by        
underpopulation. 

2. n = 2 or 3, live - any live cell with two or             
three live neighbours lives on to the next        
generation. 

3. n > 3, live - any live cell with more than           
three live neighbours dies, as if by       
overpopulation. 

4. n = 3, dead - any dead cell with exactly          
three live neighbours becomes a live cell,       
as if by reproduction. 

 
Despite its simplicity, the system achieves an       
impressive diversity of behavior, fluctuating     
between apparent randomness and order. One      
of the most apparent features of the Game of Life is           
the frequent occurrence of gliders, arrangements of       
cells that essentially move themselves across the       
grid. It is possible to arrange the automaton so that          
the gliders interact to perform computations, and       
after much effort it has been shown that the Game          
of Life can emulate a universal Turing machine. 
In the 1980s, Stephen Wolfram engaged in a        
systematic study of one-dimensional cellular     
automata, or what he calls elementary cellular       
automata; his research assistant Matthew Cook      
showed that one of these rules is Turing-complete.        
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Wolfram published A New Kind of Science in        
2002, claiming that cellular automata have      
applications in many fields of science like computer        
processors and cryptography. The primary     
classifications of cellular automata, as outlined      
by Wolfram, are numbered one to four: 
 

1. Automata in which patterns generally     
stabilize into homogeneity 

2. Automata in which patterns evolve into      
mostly stable or oscillating structures 

3. Automata in which patterns evolve in a       
seemingly chaotic fashion 

4. Automata in which patterns become     
extremely complex and may last for a long        
time, with stable local structures 

 
This last class are thought to be computationally        
universal, or capable of simulating a Turing       
machine. Cellular automata can simulate a variety       
of real-world systems, including biological and      
chemical ones. 
 

 
 
Model resembling an organic structure, generated      
with cellular automata and high-resolution voxels by       
Tom Lowe 
 
Cellular automata smoothing algorithm 
 
In game design, there is an old and fairly well          
documented trick to use cellular automata to       
generate cave-like structures. The basic idea is to        
fill the first map randomly, then repeatedly create        
new maps using the 4-5 rule: 
 

1. A tile becomes a wall if it already was a          
wall in previous iteration and 4 or more of         
its eight neighbors were walls 

2. A tile becomes a wall if it was not a wall in            
previous iteration and 5 or more of its        
neighbors were walls 

 
Put more succinctly, a tile is a wall if the 3x3 region            
centered on it contained at least 5 walls. Each         
iteration makes each tile more like its neighbors,        
and the amount of overall "noise" is gradually        
reduced. 
 

 
Diagram which shows the relation of every cell to its          
neighbours with generalized 2D grid coordinates 
 
 

 

 
 
Randomly distributed points on the grid (left) and        
the cave after six cellular automaton simulation       
steps (right) 
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Transformation matrix 
 
Matrix is a rectangular array of numbers, symbols,        
or expressions, arranged in rows and columns.       
Transformation matrices are mathematical    
models used for moving, rotating, projecting, and       
scaling objects in computer graphics. Matrices      
are also used for transformations between      
coordinate systems, for example from the 3D world        
coordinate to the 2D screen coordinate system.       
Basic operations on matrices are: 
 
Addition - provided that they have the same size         
(each matrix has the same number of rows and the          
same number of columns as the other), two        
matrices can be added or subtracted element by        
element.  
 
Multiplication - two matrices can be multiplied only        
when the number of columns in the first equals the          
number of rows in the second. Any matrix can be          
multiplied element-wise by a scalar from its       
associated field.  
 
A major application of matrices is to represent        
linear transformations, that is, generalizations of      
linear functions such as f(x) = 4x. The rotation of          
vectors in three-dimensional space is a linear       
transformation, which can be represented by a       
rotation matrix R. If v is a column vector (a matrix           
with only one column) describing the position of a         
point in space, the product Rv is a column vector          
describing the position of that point after a        
rotation.  
 
 

 
 
We can transform a vector (or a point, the process          
is the same) by writing it in a column vector notation           
and multiplying it with a transformation matrix. The        
result is the transformed vector. 
 
 
 
 
 

The product of two transformation matrices is a        
matrix that represents the composition of two       
transformations. If A and B are the matrices of two          
linear transformations, then the effect of applying       
first A and then B to an object (vector or point) is            
simply the product of the individual matrices. A        
consequence of the ability to compose      
transformations by multiplying their matrices is that       
transformations can also be inverted by simply       
inverting their matrices. So, A−1 represents the       
transformation that "undoes" A. 
 
 

 
 
4×4 transformation matrices are widely used in 3D        
computer graphics. Graphic chips (GPUs) are      
developed and optimized for performing matrix      
calculations fast and in parallel. 
 
Transformation matrices used in computer graphics      
are called, depending on their application, affine       
transformation matrices, projective   
transformation matrices, or more generally     
non-linear transformation matrices. Except in     
computer graphics, applications of matrices are      
found in most scientific fields. In every branch of         
physics, including classical mechanics, optics,     
electromagnetism, quantum mechanics, and    
quantum electrodynamics, they are used to study       
physical phenomena, such as the motion of rigid        
bodies. 
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Curve, surface and solid modeling 
(referenced from Wikipedia) 
 
 
NURBS 
 
Non-uniform rational basis spline is a      
mathematical model commonly used in computer      
graphics for generating and representing curves      
and surfaces. It offers great flexibility and precision        
for handling both analytic (surfaces defined by       
common mathematical formulae) and modeled     
shapes. NURBS are commonly used in      
computer-aided design (CAD), manufacturing    
(CAM), and engineering (CAE). NURBS tools are       
also found in various 3D modeling and animation        
software packages. 
 

 
 

 
 
A spline curve and its physical counterpart 
 
They can be efficiently handled by the computer        
programs and yet allow for easy human interaction.        
NURBS surfaces are functions of two parameters       
mapping to a surface in three-dimensional space.       
The shape of the surface is determined by control         
points. NURBS surfaces can represent, in a       
compact form, simple geometrical shapes. In      
general, editing NURBS curves and surfaces is       
highly intuitive and predictable. Control points are       
always either connected directly to the      
curve/surface, or act as if they were connected by a          
rubber band. 

 
 
Examples of NURBS surfaces and their seam lines 
 
Before computers, designs were drawn by hand on        
paper with various drafting tools. Rulers were used        
for straight lines, compasses for circles, and       
protractors for angles. But many shapes, such as        
the freeform curve of a ship's bow, could not be          
drawn with these tools. Although such curves could        
be drawn freehand at the drafting board,       
shipbuilders often needed a life-size version which       
could not be done by hand. Such large drawings         
were done with the help of flexible strips of wood,          
called splines. The splines were held in place at a          
number of predetermined points, called "ducks";      
between the ducks, the elasticity of the spline        
material caused the strip to take the shape that         
minimized the energy of bending, thus creating the        
smoothest possible shape that fit the      
constraints. The shape could be tweaked by       
moving the ducks. 
 
In 1946, mathematicians started studying the spline       
shape, and derived the piecewise polynomial      
formula known as the spline curve or spline        
function. I. J. Schoenberg gave the spline function        
its name after its resemblance to the mechanical        
spline used by draftsmen. As computers were       
introduced into the design process, the physical       
properties of such splines were investigated so that        
they could be modelled with mathematical precision       
and reproduced where needed. Pioneering work      
was done in France by Renault engineer Pierre        
Bézier, and Citroën's physicist and     
mathematician Paul de Casteljau. They worked      
nearly parallel to each other, but because Bézier        
published the results of his work, Bézier curves        
were named after him, while de Casteljau’s name is         
only associated with related algorithms. 
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BREP 
 
Boundary representation is a method for      
representing shapes using the limits. A solid is        
represented as a collection of connected surface       
elements, the boundary between solid and      
nonsolid. Boundary representation of models are      
composed of two parts: topology and geometry       
(surfaces, curves and points). The main topological       
items are: faces, edges and vertices. A face is a          
bounded portion of a surface; an edge is a bounded          
piece of a curve and a vertex lies at a point.           
Compared to the constructive solid geometry (CSG)       
representation, which uses only primitive objects      
and Boolean operations to combine them, boundary       
representation is more flexible and has a much        
richer operation set. In addition to the Boolean        
operations, B-rep has extrusion (or sweeping),      
chamfer, blending, drafting, shelling, tweaking and      
other operations which make use of these. 
 
CSG 
 
Constructive solid geometry is a technique used       
in solid modeling. It allows a modeler to create a          
complex surface or object by using Boolean       
operators to combine simpler objects. Often CSG       
presents a model or surface that appears visually        
complex, but is actually made out of cleverly        
combined or de-combined objects. In 3D computer       
graphics and CAD, CSG is often used in procedural         
modeling. 
 
The simplest solid objects used for the       
representation are called primitives. Typically they      
are the objects of simple shape: cuboids,       
cylinders, prisms, pyramids, spheres, cones.     
The set of allowable primitives is limited by each         
software package. It is said that an object is         
constructed from primitives by means of allowable       
operations, which are typically Boolean operations      
on sets: union, intersection and difference, as       
well as geometric transformations of those sets. A        
primitive can typically be described by a procedure        
which accepts some number of parameters. 
 
Constructive solid geometry has a number of       
practical uses. It is used in cases where simple         
geometric objects are desired, or where      
mathematical accuracy is important. One of the       
advantages of CSG is that it can easily assure that          
objects are "solid" or water-tight if all of the         

primitive shapes are water-tight. This can be       
important for some manufacturing or engineering      
computation applications. 
 

 
 
Different boolean operations on solid geometry 
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Geometry curvature, particles and  
inverse-square law 
(referenced from Wikipedia) 
 
 
Curvature 
 
In mathematics, curvature is any of a number of         
loosely related concepts in different areas of       
geometry. Intuitively, curvature is the amount by       
which a geometric object such as a surface        
deviates from being a flat plane, or a curve from          
being straight as in the case of a line, but this is            
defined in different ways depending on the context.  
 
Extrinsic curvature  
 
Relates to the radius of circles that touch the object.          
It is not detectable to someone who can't study the          
three-dimensional space surrounding the surface on      
which he resides. The canonical example of       
extrinsic curvature is that of a circle, which has a          
curvature equal to the reciprocal of its radius        
everywhere. Smaller circles bend more sharply, and       
hence have higher curvature.  
 

 
 
The curvature of a smooth curve is defined as the          
curvature of its osculating circle at each point. The         
curvature of a circle is defined to be the reciprocal          
of the radius: K = 1/r 
 
Curvature is normally a scalar quantity, but one        
may also define a curvature vector that takes into         
account the direction of the bend in addition to its          
magnitude.  
At each point of a differentiable surface in        
3-dimensional Euclidean space one may choose a       
unit normal vector. A normal plane at the point is          
one that contains the normal vector, and will        
therefore also contain a unique direction tangent       

to the surface and cut the surface in a plane curve,           
called normal section. This curve will in general        
have different curvatures for different normal planes       
at the point. Two principal curvatures at the point         
are the maximum and minimum values of this        
curvature. 
 

 
Example of two principal curvatures with their       
corresponding normal section planes 
 
Intrinsic curvature  
 
Defined in terms of the lengths of curves within a          
Riemannian manifold. It is detectable to the       
"inhabitants" of a surface and not just outside        
observers. It is an intrinsic measure of curvature,        
depending only on distances that are measured on        
the surface, not on the way it is isometrically         
embedded in any space. Gauss curvature is a        
product of the principal curvatures at the given        
point.  
 

 
Examples of positive, negative and flat curvature. 
 
For example, a sphere of radius r has Gaussian         
curvature 1/r2 everywhere, and a flat plane and a         
cylinder have Gaussian curvature 0 everywhere.      
The Gaussian curvature can also be negative, as in         
the case of a hyperboloid or the inside of a torus. 
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Particles 
 
Small localized object (corpuscle in older texts) to        
which can be ascribed several physical or chemical        
properties such as volume or mass. They vary        
greatly in size or quantity, from subatomic       
particles like the electron, to microscopic particles       
like atoms and molecules, to macroscopic      
particles like powders and other granular      
materials. Particles can also be used to create        
scientific models of even larger objects depending       
on their density, such as humans moving in a         
crowd or celestial bodies in motion. The concept        
of particles is particularly useful when modelling       
nature, as the full treatment of many phenomena        
can be complex and also involve difficult       
computation. The treatment of large numbers of       
particles is the realm of statistical physics. 
 
N-body simulations 
 
Also called N-particle simulations, are simulations of       
dynamical systems of particles under the      
influence of certain conditions, such as being       
subject to gravity. These simulations are very       
common in cosmology and computational fluid      
dynamics. N refers to the number of particles        
considered. As simulations with higher N are more        
computationally intensive, systems with large     
numbers of actual particles will often be       
approximated to a smaller number of particles, and        
simulation algorithms need to be optimized through       
various methods. 
 

 
 
From “A hierarchy of voids: Much ado about        
nothing” paper by Ravi K. Sheth and Rien van de          
Weygaert. 
 
 

Three-body problem 
 
Problem of taking an initial set of data that specifies          
the positions, masses, and velocities of three       
bodies for some particular point in time and then         
determining the motions of the three bodies, in        
accordance with Newton's laws of motion and of        
universal gravitation which are the laws of classical        
mechanics. The three-body problem is a special       
case of the n-body problem. Unlike two-body       
problems, there is no general closed-form solution       
for every condition and numerical methods are       
needed to solve these problems. Historically, the       
first specific three-body problem to receive      
extended study was the one involving the Moon, the         
Earth, and the Sun. 
 

 
 
Orbits related to the motion of three bodies that         
exert gravitational attraction between each other. 
 
Among classical physical systems, the n-body      
problem usually refers to a galaxy or to a cluster of           
galaxies; planetary systems, such as stars, planets,       
and their satellites, can also be treated as n-body         
systems. Some applications are conveniently     
treated by perturbation theory, in which the       
system is considered as a two-body problem plus        
additional forces causing deviations from a      
hypothetical unperturbed two-body trajectory. 
 
In work summarized in 1892–1899, Henri Poincaré       
established the existence of an infinite number of        
periodic solutions to the restricted three-body      
problem, and established techniques for continuing      
these solutions into the general three-body problem. 
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Inverse-square law 
 
Any physical law stating that a specified physical        
quantity or intensity is inversely proportional to       
the square of the distance from the source of that          
physical quantity. 
 

 
 
The fundamental cause for the inverse-square law       
can be understood as geometric dilution      
corresponding to point-source radiation into     
three-dimensional space. 
 
The inverse-square law generally applies when      
some force, energy, or other conserved quantity is        
evenly radiated outward from a point source in        
three-dimensional space. Since the surface area of       
a sphere (which is 4πr2 ) is proportional to the          
square of the radius, as the emitted radiation gets         
farther from the source, it is spread out over an area           
that is increasing in proportion to the square of the          
distance from the source. Hence, the intensity of        
radiation passing through any unit area (directly       
facing the point source) is inversely proportional to        
the square of the distance from the point source.         
Gauss' law is similarly applicable, and can be used         
with any physical quantity that acts in accord to the          
inverse-square relationship. 
 
Gravity 
 
Attraction of two objects with mass. Newton's law        
states: The gravitational attraction force between      
two point masses is directly proportional to the        
product of their masses and inversely proportional       
to the square of their separation distance. The force         
is always attractive and acts along the line joining         
them. 
 
 
 
 
 

Electrostatics 
 
The force of attraction or repulsion between two        
electrically charged particles, in addition to being       
directly proportional to the product of the electric        
charges, is inversely proportional to the square of        
the distance between them. This is known as        
Coulomb's law. 
 
Light 
 
The intensity (or illuminance or irradiance) of light or         
other linear waves radiating from a point source        
(energy per unit of area perpendicular to the        
source) is inversely proportional to the square of the         
distance from the source. An object (of the same         
size) twice as far away, receives only one-quarter        
the energy (in the same time period). 
 
Acoustics 
 
The sound pressure of a spherical wavefront       
radiating from a point source decreases by 50% as         
the distance is doubled. Measured in dB, the        
decrease is still 6.02 dB, since dB represents an         
intensity ratio. The pressure ratio (as opposed to        
power ratio) is not inverse-square, but is       
inverse-proportional (inverse distance law). 
 

 
Inverse proportionality diagram. Variable y is      
directly proportional to the variable x. 
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Recursion, L-systems and fractals 
(referenced from Wikipedia) 
 
 
Recursion 
 
Occurs when a thing is defined in terms of itself          
or of its type. Recursion is used in a variety of           
disciplines ranging from linguistics to logic. The       
most common application of recursion is in       
mathematics and computer science, where a      
function being defined is applied within its own        
definition.  
 

 
 
Ouroboros, an ancient symbol depicting a serpent       
or dragon eating its own tail. 
 
Recursion in computer science is a method where        
the solution to a problem depends on solutions to         
smaller instances of the same problem (as       
opposed to iteration). The approach can be       
applied to many types of problems, and recursion is         
one of the central ideas of computer science.        
Niklaus Wirth, in his book Algorithms + Data        
Structures = Programs from 1976, wrote:  
 

"The power of recursion evidently lies in       
the possibility of defining an infinite set of        
objects by a finite statement.” 

 
Most computer programming languages support     
recursion by allowing a function to call itself        
within the program text. Some functional      
programming languages do not define any looping       
constructs but rely solely on recursion to repeatedly        
call code. 
 
 
 
 

Lindenmayer system 
 
Parallel rewriting system and a type of formal        
grammar. An L-system consists of an alphabet of        
symbols that can be used to make strings, a         
collection of production rules that expand each       
symbol into some larger string of symbols, an initial         
"axiom" string from which to begin construction,       
and a mechanism for translating the generated       
strings into geometric structures. L-systems were      
introduced and developed in 1968 by Aristid       
Lindenmayer, a Hungarian theoretical biologist and      
botanist at the University of Utrecht. Lindenmayer       
used L-systems to describe the behaviour of plant        
cells and to model the growth processes of plant         
development. L-systems have also been used to       
model the morphology of a variety of organisms and         
can be used to generate self-similar fractals such        
as iterated function systems. 
 

 
 
The recursive nature of the L-system rules leads        
to self-similarity and thereby, fractal-like forms are       
easy to describe with an L-system. Plant models        
and natural-looking organic forms are easy to       
define, as by increasing the recursion level the form         
slowly “grows” and becomes more complex.      
Lindenmayer systems are also popular in the       
generation of artificial life. 
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Fractals 
 
In mathematics, an abstract object used to       
describe and simulate naturally occurring     
objects. Artificially created fractals commonly     
exhibit similar patterns at increasingly small scales.       
It is also known as expanding symmetry or        
evolving symmetry. If the replication is exactly the        
same at every scale, it is called a self-similar         
pattern. Fractals also include the idea of a detailed         
pattern that repeats itself. 
 

 
 
Sierpinski carpet (6 iterations), a two-dimensional      
fractal first described by Wacław Sierpiński in 1916 
 
Fractals are different from other geometric figures       
because of the way in which they scale. Doubling         
the edge lengths of a polygon multiplies its area by          
four, which is two (the scale ratio) raised to the          
power of two (the dimension of the space the         
polygon resides in). Likewise, if the radius of a         
sphere is doubled, its volume scales by eight, which         
is two (the scale ratio) to the power of three (the           
dimension that the sphere resides in). But if a         
fractal's one-dimensional lengths are all doubled,      
the spatial content of the fractal scales by a power          
that is not necessarily an integer. This power is         
called the fractal dimension of the fractal, and it         
usually exceeds the fractal's topological dimension.      
As mathematical equations, fractals are usually      
nowhere differentiable (in a concrete sense, this       
means fractals cannot be measured in traditional       
ways). An infinite fractal curve can be conceived of         
as winding through space differently from an       
ordinary line, still being a 1-dimensional line yet        
having a fractal dimension indicating it also       
resembles a surface. 
The mathematical roots of the idea of fractals have         
been traced throughout the years as a formal path         
of published works, starting in the 17th century with         

notions of recursion, then moving through      
increasingly rigorous mathematical treatment of the      
concept to the study of continuous but not        
differentiable functions in the 19th century by the        
seminal work of Bernard Bolzano, Bernhard      
Riemann, and Karl Weierstrass, and on to the        
coining of the word fractal in the 20th century with a           
subsequent burgeoning of interest in fractals and       
computer-based modelling in the 20th century.      
The term "fractal" was first used by mathematician        
Benoit Mandelbrot in 1975. Mandelbrot based it on        
the Latin frāctus meaning "broken" or      
"fractured", and used it to extend the concept of         
theoretical fractional dimensions to geometric     
patterns in nature. 
 
Fractals are not limited to geometric patterns, but        
can also describe processes in time. Fractal       
patterns with various degrees of self-similarity have       
been rendered or studied in images, structures and        
sounds and found in nature, technology, art, and        
law. Fractals are of particular relevance in the field         
of chaos theory, since the graphs of most chaotic         
processes are fractal. 

 
 
Sierpinski triangle (7 iterations), is a fractal resulting        
from doing the following: 1. Start with an equilateral         
triangle. 2. Remove center part. 3. Do the same for          
the three largest equilateral triangles left in this one. 
 
 
 
 
 
 
 
 
 
 

 
20 

 
\     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \  



 
/     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /     /  

 

 
 

Dynamic relaxation and minimal surfaces 
(referenced from Wikipedia) 
 
 
Dynamic relaxation 
 
A numerical method which can be used for        
form-finding for cable and fabric structures. The       
aim is to find a geometry where all forces are in           
equilibrium. In the past this was done by direct         
modelling, using hanging chains and weights      
(Antoni Gaudi used it while designing Sagrada       
Familia), or by using soap films, which have the         
property of adjusting to find a minimal surface. 
 
The dynamic relaxation method is based on       
discretizing the continuum under consideration     
by lumping the mass at nodes and defining the         
relationship between nodes in terms of stiffness.       
The system oscillates about the equilibrium position       
under the influence of loads. An iterative process        
is followed by simulating a pseudo-dynamic process       
in time, with each iteration based on an update of          
the geometry. 
 
Iteration steps for calculating static equilibrium are: 
 

1. set the initial kinetic energy and all nodal        
velocity components to zero 

2. compute the geometry set and the      
applied load component for each node 

3. compute the residual force for each node 
4. reset the residual forces of constrained      

nodes to zero 
5. update velocity and coordinates of the      

nodes 
6. return to step 3 until the structure is in         

static equilibrium 
 
Dynamic relaxation is an example of optimization,       
in which parameter which is being optimized for is         
the sum of all forces between the nodes. The goal          
of the optimization is to reduce that sum to zero          
exactly or to the best possible approximation. This        
is achieved by changing the distances and       
angles between the nodes in a way which        
minimizes the total sum of forces. 

 
 
The world's first tensile steel shell by Vladimir        
Shukhov (during construction), Nizhny Novgorod,     
1895 
 
Mechanical equilibrium 
 
A particle is in mechanical equilibrium if the net         
force on that particle is zero. By extension, a         
physical system made up of many parts is in         
mechanical equilibrium if the net force on each of         
its individual parts is zero. In addition to defining         
mechanical equilibrium in terms of force, there are        
many alternative definitions for mechanical     
equilibrium which are all mathematically equivalent.      
In terms of momentum, a system is in equilibrium if          
the momentum of its parts is all constant. In terms          
of velocity, the system is in equilibrium if velocity         
is constant. Since all particles in equilibrium have        
constant velocity, it is always possible to find an         
inertial reference frame in which the particle is        
stationary with respect to the frame. 
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Minimal surface 
 
A surface that locally minimizes its area. This is         
equivalent to having zero mean curvature. 
The term minimal surface is used because these        
surfaces originally arose as surfaces that minimized       
total surface area subject to some constraint.       
Physical models of area-minimizing minimal     
surfaces can be made by dipping a wire frame into          
a soap solution, forming a soap film, which is a          
minimal surface whose boundary is the wire frame.        
For a given constraint there may also exist several         
minimal surfaces with different areas. 
 

 
 
A gyroid is an infinitely connected triply periodic        
minimal surface discovered by Alan Schoen in 1970 
 

    

    
 
Examples of Schwarz minimal surfaces: primitive      
(upper left), diamond (upper right), crossed layers of        
parallels (lower left), hexagonal (lower right) 
 
 
 
 
 

Stretched grid method 
 
A numerical technique for finding approximate      
solutions of various mathematical and engineering      
problems that can be related to an elastic grid         
behavior. In particular, meteorologists use the      
stretched grid method for weather prediction and       
engineers use the stretched grid method to design        
tents and other tensile structures. 
 

 
 
West German Pavilion at Expo 67 in Montreal by         
Frei Otto is an example of a stretched grid structure 
 
Soap films 
 
Physical examples of the complex mathematical      
problem of minimal surface. They will assume the        
shape of least surface area possible containing a        
given volume. A soap film, which has equal        
pressure on inside as outside, is a surface with zero          
mean curvature. A soap bubble is a closed soap         
film: due to the difference in outside and inside         
pressure, it is a surface of constant mean curvature.         
While it has been known since 1884 that a spherical          
soap bubble is the least-area way of enclosing a         
given volume of air (a theorem of H. A. Schwarz), it           
was not until 2000 that it was proven that two          
merged soap bubbles provide the optimum way of        
enclosing two given volumes of air of different size         
with the least surface area. This has been dubbed         
the double bubble conjecture. 
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Because of these qualities, soap bubble films have        
been used with practical problem solving      
application. Structural engineer Frei Otto used      
soap bubble films to determine the geometry of a         
sheet of least surface area that spreads between        
several points, and translated this geometry into       
revolutionary tensile roof structures. 
 

 
 
Soap film experiments conducted at Institute for       
Lightweight Structures at the University of Stuttgart,       
which Frei Otto founded in 1964 
 
The structures that soap films make can not just be          
enclosed as spheres, but virtually any shape, for        
example in wire frames. Therefore, many different       
minimal surfaces can be designed. It is actually        
sometimes easier to physically make them than to        
compute them by mathematical modelling. This is       
why the soap films can be considered as analog         
computers which can in some cases outperform       
conventional computers, depending on the     
complexity of the system. 
 
Weaire–Phelan structure 
 
A complex 3-dimensional structure representing an      
idealised foam of equal-sized bubbles. It uses       
two kinds of cells which have equal volume. The         
first one is a pyritohedron, an irregular       
dodecahedron with pentagonal faces. The second      
is a form of truncated hexagonal trapezohedron,       
a species of tetrakaidecahedron with two hexagonal       
and twelve pentagonal faces. The Weaire–Phelan      
structure is the inspiration for the design of the         
Beijing National Aquatics Centre for the 2008       
Olympics in Beijing in China. 

 
 
Soap bubbles forming a Weaire–Phelan structure      
as it encloses a volume with a least surface area 
 
In 1993, Trinity College Dublin physicist Denis       
Weaire and his student Robert Phelan found that        
in computer simulations of foam, this structure was        
a better solution of the Kelvin problem than the         
previous best-known solution, the Kelvin structure.  
 
In 1887, Lord Kelvin asked how space could be         
partitioned into cells of equal volume with the        
least area of surface between them, i.e., what was         
the most efficient bubble foam? This problem has        
since been referred to as the Kelvin problem. He         
proposed a foam, based on the bitruncated cubic        
honeycomb, which is called the Kelvin structure.       
This is the convex uniform honeycomb formed by        
the truncated octahedron, which is a 14-faced       
space-filling polyhedron (a tetradecahedron), with 6      
square faces and 8 hexagonal faces. The Kelvin        
conjecture is that this structure solves the Kelvin        
problem: that the foam of the bitruncated cubic        
honeycomb is the most efficient foam. The Kelvin        
conjecture was widely believed, and no      
counterexample was known for more than 100       
years, until it was disproved by the discovery of         
the Weaire–Phelan structure. 
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