Some properties of the sum operator, expected value, variance and covariance
In all equations below, x, y and z are random variables. a, b, c are constants.
Sum operator:

$$
\begin{aligned}
\sum_{t=1}^{T} x_{t} & =x_{1}+x_{2}+x_{3}+\ldots+x_{T-1}+x_{T} \\
\sum_{t=1}^{T}\left(x_{t}+y_{t}\right) & =\sum_{t=1}^{T} x_{t}+\sum_{t=1}^{T} y_{t} \\
\sum_{t=1}^{T} a x_{t} & =a \sum_{t=1}^{T} x_{t} \\
\sum_{t=1}^{T}\left(x_{t}+b\right) & =\sum_{t=1}^{T} x_{t}+b T
\end{aligned}
$$

Expected value (Measuring the mean of a random variable):

$$
\begin{aligned}
E(x+y) & =E(x)+E(y) \\
E(a x) & =a E(x) \\
E(x+b) & =E(x)+b \\
E(a x+b y) & =a E(x)+b E(y)
\end{aligned}
$$

Note that the expected value of a constant is the constant itself.
Variance: (Measuring the uncertainty of a random variable)

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left[(x-E(x))^{2}\right] \\
\operatorname{Var}(a x) & =a^{2} \operatorname{Var}(x) \\
\operatorname{Var}(x+b) & =\operatorname{Var}(x) \\
\operatorname{Var}(a x+b y) & =a^{2} \operatorname{Var}(x)+b^{2} \operatorname{Var}(y)+2 a b \operatorname{Cov}(x, y)
\end{aligned}
$$

Note that the variance of a constant is zero.

Covariance: (Measuring the comovement of two random variables)

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =E[(x-E(x))(y-E(y))] \\
\operatorname{Cov}(x, x) & =E[(x-E(x))(x-E(x))]=E\left[(x-E(x))^{2}\right]=\operatorname{Var}(x) \\
\operatorname{Cov}(a x, b y) & =a b \operatorname{Cov}(x, y) \\
\operatorname{Cov}(x+a, y+b) & =\operatorname{Cov}(x, y) \\
\operatorname{Cov}(x+y, z) & =\operatorname{Cov}(x, z)+\operatorname{Cov}(y, z) \\
\operatorname{Cov}(a x+b y, c z) & =a c \operatorname{Cov}(x, z)+b c \operatorname{Cov}(y, z)
\end{aligned}
$$

