
Chapter 2

Mathematical and Statistical Foundations
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Functions

• A function is a mapping or relationship between an input or
set of inputs and an output

• We write that y, the output, is a function f (x), the input, or y
=f(x)

• y could be a linear function of x where the relationship can be
expressed on a straight line

• Or it could be non-linear where it would be expressed
graphically as a curve

• If the equation is linear, we would write the relationship as

y = a + bx

where y and x are called variables and a and b are parameters

• a is the intercept and b is the slope or gradient
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Straight Lines

• The intercept is the point at which the line crosses the y-axis

• Example: suppose that we were modelling the relationship
between a student’s average mark, y (in percent), and the
number of hours studied per year, x

• Suppose that the relationship can be written as a linear
function

y = 25 + 0.05x

• The intercept, a, is 25 and the slope, b, is 0.05

• This means that with no study (x=0), the student could
expect to earn a mark of 25%

• For every hour of study, the grade would on average improve
by 0.05%, so another 100 hours of study would lead to a 5%
increase in the mark
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Plot of Hours Studied Against Mark Obtained
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Straight Lines

• In the graph above, the slope is positive

– i.e. the line slopes upwards from left to right

• But in other examples the gradient could be zero or negative

• For a straight line the slope is constant – i.e. the same along
the whole line

• In general, we can calculate the slope of a straight line by
taking any two points on the line and dividing the change in y
by the change in x

• ∆ (Delta) denotes the change in a variable

• For example, take two points x = 100, y = 30 and x = 1000,
y = 75
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Straight Lines (Cont’d)

• We can write these using coordinate notation (x,y) as
(100,30) and (1000,75)

• We would calculate the slope as

∆y

∆x
=

75− 30

1000− 100
= 0.05
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Roots

• The point at which a line crosses the x-axis is known as the
root

• A straight line will have one root (except for a horizontal line
such as y=4 which has no roots)

• To find the root of an equation set y to zero and rearrange

0 = 25 + 0.05x

• So the root is x = −500

• In this case it does not have a sensible interpretation: the
number of hours of study required to obtain a mark of zero!
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Quadratic Functions
• A linear function is often not sufficiently flexible to accurately

describe the relationship between two series

• We could use a quadratic function instead. We would write it
as

y = a + bx + cx2

where a, b, c are the parameters that describe the shape of
the function

• Quadratics have an additional parameter compared with linear
functions

• The linear function is a special case of a quadratic where c=0

• a still represents where the function crosses the y-axis

• As x becomes very large, the x2 term will come to dominate

• Thus if c is positive, the function will be ∪-shaped, while if c
is negative it will be ∩-shaped.
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The Roots of Quadratic Functions

• A quadratic equation has two roots

• The roots may be distinct (i.e., different from one another), or
they may be the same (repeated roots); they may be real
numbers (e.g., 1.7, -2.357, 4, etc.) or what are known as
complex numbers

• The roots can be obtained either by factorising the equation
(contracting it into parentheses), by “completing the square”,
or by using the formula:

x =
−b ±

√
b2 − 4ac

2c

• If b2 > 4ac, the function will have two unique roots and it will
cross the x-axis in two separate places
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The Roots of Quadratic Functions (Cont’d)

• If b2 = 4ac, the function will have two equal roots and it will
only cross the x-axis in one place

• If b2 < 4ac , the function will have no real roots (only complex
roots), it will not cross the x-axis at all and thus the function
will always be above the x-axis.
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Calculating the Roots of Quadratics - Examples

Determine the roots of the following quadratic equations:

1. y = x2 + x − 6

2. y = 9x2 + 6x + 1

3. y = x2 − 3x + 1

4. y = x2 − 4x
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Calculating the Roots of Quadratics - Solutions

• We solve these equations by setting them in turn to zero

• We could use the quadratic formula in each case, although it
is usually quicker to determine first whether they factorise

1. x2 + x − 6 = 0 factorises to (x − 2)(x + 3) = 0 and thus the
roots are 2 and −3, which are the values of x that set the
function to zero. In other words, the function will cross the
x-axis at x = 2 and x = −3.

2. 9x2 + 6x + 1 = 0 factorises to (3x + 1)(3x + 1) = 0 and thus
the roots are −1/3 and −1/3. This is known as repeated
roots – since this is a quadratic equation there will always be
two roots but in this case they are both the same.
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Calculating the Roots of Quadratics - Solutions
(Cont’d)

3. x2 − 3x + 1 = 0 does not factorise and so the formula must
be used with a = 1, b = −3, c = 1 and the roots are 0.38 and
2.62 to two decimal places.

4. x2 − 4x = 0 factorises to x(x − 4) = 0 and so the roots are 0
and 4.

• All of these equations have two real roots

• But if we had an equation such as y = 3x2 − 2x + 4, this
would not factorise and would have complex roots since
b2 − 4ac < 0 in the quadratic formula.
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Powers of Number or of Variables

• A number or variable raised to a power is simply a way of
writing repeated multiplication

• So for example, raising x to the power 2 means squaring it
(i.e., x2 = x × x).

• Raising it to the power 3 means cubing it (x3 = x × x × x),
and so on

• The number that we are raising the number or variable to is
called the index, so for x3, the index would be 3
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Manipulating Powers and their Indices

• Any number or variable raised to the power one is simply that
number or variable, e.g., 31 = 3, x1 = x , and so on

• Any number or variable raised to the power zero is one, e.g.,
50 = 1, x0 = 1, etc., except that 00 is not defined (i.e., it
does not exist)

• If the index is a negative number, this means that we divide
one by that number – for example, x−3 = 1

x3
= 1

x×x×x .

• If we want to multiply together a given number raised to more
than one power, we would add the corresponding indices
together – for example, x2 × x3 = x2x3 = x2+3 = x5.

’Introductory Econometrics for Finance’ c© Chris Brooks 2013 15



Manipulating Powers and their Indices (Cont’d)

• If we want to calculate the power of a variable raised to a
power (i.e., the power of a power), we would multiply the

indices together – for example, x2
3

= x2×3 = x6.

• If we want to divide a variable raised to a power by the same
variable raised to another power, we subtract the second index
from the first – for example, x3

x2
= x3−2 = x .

• If we want to divide a variable raised to a power by a different
variable raised to the same power, the following result applies:(

x

y

)n

=
xn

yn
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Manipulating Powers and their Indices (Cont’d)

• The power of a product is equal to each component raised to
that power – for example, (x × y)3 = x3 × y3.

• The indices for powers do not have to be integers, so x1/2 is
the notation we would use for taking the square root of x,
sometimes written

√
x

• Other, non-integer powers are also possible, but are harder to
calculate by hand (e.g. x0.76, x−0.27, etc.)

• In general, x1/n = n
√
x .
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The Exponential Function, e

• It is sometimes the case that the relationship between two
variables is best described by an exponential function

• For example, when a variable grows (or reduces) at a rate in
proportion to its current value, we would write y = ex

• e is a simply number: 2.71828. . .

• It is also useful for capturing the increase in value of an
amount of money that is subject to compound interest

• The exponential function can never be negative, so when x is
negative, y is close to zero but positive

• It crosses the y-axis at one and the slope increases at an
increasing rate from left to right.
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A Plot of the Exponential Function
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Logarithms

• Logarithms were invented to simplify cumbersome
calculations, since exponents can then be added or subtracted,
which is easier than multiplying or dividing the original
numbers

• There are at least three reasons why log transforms may be
useful.

1. Taking a logarithm can often help to rescale the data so that
their variance is more constant, which overcomes a common
statistical problem known as heteroscedasticity.

2. Logarithmic transforms can help to make a positively skewed
distribution closer to a normal distribution.

3. Taking logarithms can also be a way to make a non-linear,
multiplicative relationship between variables into a linear,
additive one.
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How do Logs Work?

• Consider the power relationship 23 = 8

• Using logarithms, we would write this as log2 8 = 3, or ‘the
log to the base 2 of 8 is 3’

• Hence we could say that a logarithm is defined as the power
to which the base must be raised to obtain the given number

• More generally, if ab = c , then we can also write loga c = b

• If we plot a log function, y = log x , it would cross the x-axis
at one – see the following slide

• It can be seen that as x increases, y increases at a slower rate,
which is the opposite to an exponential function where
yincreases at a faster rate as x increases.
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A Graph of a Log Function
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How do Logs Work?

• Natural logarithms, also known as logs to base e, are more
commonly used and more useful mathematically than logs to
any other base

• A log to base e is known as a natural or Naperian logarithm,
denoted interchangeably by ln(y) or log(y)

• Taking a natural logarithm is the inverse of a taking an
exponential, so sometimes the exponential function is called
the antilog

• The log of a number less than one will be negative, e.g.
ln(0.5) ≈ −0.69

• We cannot take the log of a negative number

– So ln(-0.6), for example, does not exist.
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The Laws of Logs

For variables x and y :

• ln (x y) = ln (x) + ln (y)

• ln (x/y) = ln (x) − ln (y)

• ln (y c) = c ln (y)

• ln (1) = 0

• ln (1/y) = ln (1)− ln (y) = −ln (y).

• ln(ex) = e ln(x) = x
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Sigma Notation

• If we wish to add together several numbers (or observations
from variables), the sigma or summation operator can be very
useful

• Σ means ‘add up all of the following elements.’ For example,
Σ(1 + 2 + 3) = 6

• In the context of adding the observations on a variable, it is
helpful to add ‘limits’ to the summation

• For instance, we might write
∑4

i=1 xi

where the i subscript is an index, 1 is the lower limit and 4 is
the upper limit of the sum

• This would mean adding all of the values of x from x1 to x4.
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Properties of the Sigma Operator

n∑
i=1

xi +
n∑

i=1

zi =
n∑

i=1

(xi + zi )

n∑
i=1

cxi = c
n∑

i=1

xi .

n∑
i=1

xizi 6=
n∑

i=1

xi

n∑
i=1

zi

n∑
i=1

x = x + x + . . .+ x = nx

n∑
i=1

xi = x1 + x2 + . . .+ xn = nx .
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Pi Notation

• Similar to the use of sigma to denote sums, the pi operator
(
∏

) is used to denote repeated multiplications.

• For example

n∏
i=1

xi = x1x2 . . . xn

means ‘multiply together all of the x i for each value of i
between the lower and upper limits.’

• It also follows that

n∏
i=1

(cxi ) = cn
n∏

i=1

xi
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Differential Calculus
• The effect of the rate of change of one variable on the rate of

change of another is measured by a mathematical derivative

• If the relationship between the two variables can be
represented by a curve, the gradient of the curve will be this
rate of change

• Consider a variable y that is a function f of another variable x,
i.e. y = f (x): the derivative of y with respect to x is written

dy

dx
=

df (x)

dx

or sometimes f ′(x).

• This term measures the instantaneous rate of change of y
with respect to x, or in other words, the impact of an
infinitesimally small change in x

• Notice the difference between the notations ∆y and dy

’Introductory Econometrics for Finance’ c© Chris Brooks 2013 28



Differentiation: The Basics

1. The derivative of a constant is zero – e.g. if

e.g. if y = 10,
dy

dx
= 0.

This is because y= 10 would be a horizontal straight line on a
graph of y against x, and therefore the gradient of this
function is zero

2. The derivative of a linear function is simply its slope

e.g. if y = 3x + 2,
dy

dx
= 3.

• But non-linear functions will have different gradients at each
point along the curve
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Differentiation: The Basics (Cont’d)

• In effect, the gradient at each point is equal to the gradient of
the tangent at that point

• The gradient will be zero at the point where the curve
changes direction from positive to negative or from negative
to positive – this is known as a turning point.
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The Tangent to a Curve

’Introductory Econometrics for Finance’ c© Chris Brooks 2013 31



The Derivative of a Power Function or of a Sum
• The derivative of a power function n of x,

i.e. y = cxn is given by
dy

dx
= cnxn−1.

• For example:

y = 4x3,
dy

dx
= (4× 3)x2 = 12x2

y =
3

x
= 3x−1,

dy

dx
= (3×−1)x−2 = −3x−2 =

−3

x2
.

• The derivative of a sum is equal to the sum of the derivatives
of the individual parts: e.g., if

e.g. if y = f (x) + g(x),
dy

dx
= f ′(x) + g ′(x)

• The derivative of a difference is equal to the difference of the
derivatives of the individual parts: e.g.,

if y = f (x)− g(x),
dy

dx
= f ′(x)− g ′(x).
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The Derivatives of Logs and Exponentials

• The derivative of the log of The derivative of the log of x is
given by 1/x

i.e.
d(log(x))

dx
=

1

x
.

• The derivative of the log of a function of x is the derivative of
the function divided by the function, i.e.

i.e.
d(log(f (x)))

dx
=

f ′(x)

f (x)
.
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The Derivatives of Logs and Exponentials (Cont’d)

E.g., the derivative of log(x3 + 2x − 1) is given by

3x2 + 2

x3 + 2x − 1
.

• The derivative of ex is ex .

• The derivative of ef (x) is given by f ′(x)ef (x).

E.g., if y = e3x
2
, dy
dx = 6xe3x

2
.
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Higher Order Derivatives

• It is possible to differentiate a function more than once to
calculate the second order, third order, . . ., nth order
derivatives

• The notation for the second order derivative, which is usually
just termed the second derivative, is

d2y

dx2
= f ′′(x) =

d(dydx )

dx

• To calculate second order derivatives, differentiate the
function with respect to x and then differentiate it again
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Higher Order Derivatives (Cont’d)

• For example, suppose that we have the function
y = 4x5 + 3x3 + 2x + 6, the first order derivative is

dy

dx
=

d(4x5 + 3x3 + 2x + 6)

dx
= f ′(x) = 20x4 + 9x2 + 2.

• The second order derivative is

d2y

dx2
= f ′′(x) =

d(d(4x
5+3x3+2x+6)

dx )

dx

=
d(20x4 + 9x2 + 2)

dx
= 80x3 + 18x .
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Higher Order Derivatives (Cont’d)

• The second order derivative can be interpreted as the gradient
of the gradient of a function – i.e., the rate of change of the
gradient

• How can we tell whether a particular turning point is a
maximum or a minimum?

• The answer is that we would look at the second derivative

• When a function reaches a maximum, its second derivative is
negative, while it is positive for a minimum.
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Maxima and Minima of Functions

• Consider the quadratic function y = 5x2 + 3x − 6.

• Since the squared term in the equation has a positive sign
(i.e., it is 5 rather than, say, -5), the function will have a
∪-shape rather than an ∩-shape, and thus it will have a
minimum rather than a maximum:

dy

dx
= 10x + 3,

d2y

dx2
= 10.

• Since the second derivative is positive, the function indeed has
a minimum

• To find where this minimum is located, take the first
derivative, set it to zero and solve it for x
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Maxima and Minima of Functions (Cont’d)

• So we have 10x + 3 = 0, and x = −3/10 = −0.3. If
x = −0.3, y is found by substituting −0.3 into
y = 5x2 + 3x − 6 = 5× (−0.3)2 + (3×−0.3)− 6 = −6.45.
Therefore, the minimum of this function is found at
(−0.3,−6.45).
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Partial Differentiation

• In the case where y is a function of more than one variable
(e.g. y = f (x1, x2, . . . , xn)), it may be of interest to determine
the effect that changes in each of the individual x variables
would have on y

• Differentiation of y with respect to only one of the variables,
holding the others constant, is partial differentiation

• The partial derivative of y with respect to a variable x1 is
usually denoted

∂y

∂x1

• All of the rules for differentiation explained above still apply
and there will be one (first order) partial derivative for each
variable on the right hand side of the equation.
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How to do Partial Differentiation

• We calculate these partial derivatives one at a time, treating
all of the other variables as if they were constants.

• To give an illustration, suppose y = 3x31 + 4x1 − 2x42 + 2x22 ,
the partial derivative of y with respect to x1 would be

∂y

∂x1
= 9x21 + 4

, while the partial derivative of y with respect to x2

∂y

∂x2
= −8x32 + 4x2
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How to do Partial Differentiation (Cont’d)

• The ordinary least squares (OLS) estimator gives formulae for
the values of the parameters that minimise the residual sum of
squares, denoted by L

• The minimum of L is found by partially differentiating this
function and setting the partial derivatives to zero

• Therefore, partial differentiation has a key role in deriving the
main approach to parameter estimation that we use in
econometrics.
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Integration

• Integration is the opposite of differentiation

• If we integrate a function and then differentiate the result, we
get back the original function

• Integration is used to calculate the area under a curve
(between two specific points)

• Further details on the rules for integration are not given since
the mathematical technique is not needed for any of the
approaches used here.
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Matrices - Background

• Some useful terminology:

– A scalar is simply a single number (although it need not be a
whole number – e.g. 3, −5, 0.5 are all scalars)

– A vector is a one-dimensional array of numbers (see below for
examples)

– A matrix is a two-dimensional collection or array of numbers.
The size of a matrix is given by its numbers of rows and
columns

• Matrices are very useful and important ways for organising
sets of data together, which make manipulating and
transforming them easy

• Matrices are widely used in econometrics and finance for
solving systems of linear equations, for deriving key results,
and for expressing formulae.
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Working with Matrices
• The dimensions of a matrix are quoted as R × C , which is the

number of rows by the number of columns

• Each element in a matrix is referred to using subscripts.

• For example, suppose a matrix M has two rows and four
columns. The element in the second row and the third column
of this matrix would be denoted m23.

• More generally mij refers to the element in the ith row and
the jth column.

• Thus a 2×4 matrix would have elements(
m11 m12 m13 m14

m21 m22 m23 m24

)
• If a matrix has only one row, it is known as a row vector,

which will be of dimension 1× C , where C is the number of
columns

e.g. (2.7 3.0 −1.5 0.3)
’Introductory Econometrics for Finance’ c© Chris Brooks 2013 45



Working with Matrices

• A matrix having only one column is a column vector, which
will be of dimension R × 1, where R is the number of rows,
e.g.

e.g.

 1.3
−0.1

0.0


• When the number of rows and columns is equal (i.e. R=C), it

would be said that the matrix is square, e.g. the 2×2 matrix:(
0.3 0.6
−0.1 0.7

)
• A matrix in which all the elements are zero is a zero matrix.
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Working with Matrices (Cont’d)
• A symmetric matrix is a special square matrix that is

symmetric about the leading diagonal so that
mij = mji ∀ i , j

e.g.


1 2 4 7
2 −3 6 9
4 6 2 −8
7 9 −8 0


• A diagonal matrix is a square matrix which has non-zero

terms on the leading diagonal and zeros everywhere else,

e.g.


−3 0 0 0

0 1 0 0
0 0 2 0
0 0 0 −1
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Working with Matrices (Cont’d)

• A diagonal matrix with 1 in all places on the leading diagonal
and zero everywhere else is known as the identity matrix,
denoted by I, e.g.

e.g.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


• The identity matrix is essentially the matrix equivalent of the

number one

• Multiplying any matrix by the identity matrix of the
appropriate size results in the original matrix being left
unchanged
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Working with Matrices (Cont’d)

• So for any matrix M, MI=IM=M

• In order to perform operations with matrices , they must be
conformable

• The dimensions of matrices required for them to be
conformable depend on the operation.
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Matrix Addition or Subtraction

• Addition and subtraction of matrices requires the matrices
concerned to be of the same order (i.e. to have the same
number of rows and the same number of columns as one
another)

• The operations are then performed element by element

e.g., if A =

(
0.3 0.6
−0.1 0.7

)
, and B =

(
0.2 −0.1
0 0.3

)
,

A + B =

(
0.3 + 0.2 0.6− 0.1
−0.1 + 0 0.7 + 0.3

)
=

(
0.5 0.5
−0.1 1.0

)
,

A− B =

(
0.3− 0.2 0.6−−0.1
−0.1− 0 0.7− 0.3

)
=

(
0.1 0.7
−0.1 0.4

)
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Matrix Multiplication
• Multiplying or dividing a matrix by a scalar (that is, a single

number), implies that every element of the matrix is
multiplied by that number

e.g. 2A = 2

(
0.3 0.6
−0.1 0.7

)
=

(
0.6 1.2
−0.2 1.4

)
• More generally, for two matrices A and B of the same order

and for c a scalar, the following results hold

A + B = B + A

A + 0 = 0 + A = A

cA = Ac

c(A + B) = cA + cB

A0 = 0A = 0
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Matrix Multiplication

• Multiplying two matrices together requires the number of
columns of the first matrix to be equal to the number of rows
of the second matrix

• Note also that the ordering of the matrices is important, so in
general, AB 6= BA

• When the matrices are multiplied together, the resulting
matrix will be of size (number of rows of first matrix d́7
number of columns of second matrix), e.g.
(3× 2)× (2× 4) = (3× 4).

• More generally,

(a× b)× (b × c) × (c × d)× (d × e) = (a× e), etc.

• In general, matrices cannot be divided by one another.
– Instead, we multiply by the inverse.
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Matrix Multiplication Example

• The actual multiplication of the elements of the two matrices
is done by multiplying along the rows of the first matrix and
down the columns of the second
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Matrix Multiplication Example (Cont’d)

e.g.

 1 2
7 3
1 6

( 0 2 4 9
6 3 0 2

)
(3× 2) (2× 4)

=

 ((1× 0) + (2× 6)) ((1× 2) + (2× 3)) ((1× 4) + (2× 0)) ((1× 9) + (2× 2))
((7× 0) + (3× 6)) ((7× 2) + (3× 3)) ((7× 4) + (3× 0)) ((7× 9) + (3× 2))
((1× 0) + (6× 6)) ((1× 2) + (6× 3)) ((1× 4) + (6× 0)) ((1× 9) + (6× 2))


(3× 4)

=

 12 8 4 13
18 23 28 69
36 20 4 21


(3× 4)
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The Transpose of a Matrix

• The transpose of a matrix, written A′ or AT, is the matrix
obtained by transposing (switching) the rows and columns of
a matrix

e.g.if A =

(
1 2
7 3
1 6

)
then A′ =

(
1 7 1
2 3 6

)
• If A is of dimensions R × C , A′ will be C × R.
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The Rank of a Matrix

• The rank of a matrix A is given by the maximum number of
linearly independent rows (or columns). For example,

rank

(
3 4
7 9

)
= 2

rank

(
3 6
2 4

)
= 1

• In the first case, all rows and columns are (linearly)
independent of one another, but in the second case, the
second column is not independent of the first (the second
column is simply twice the first)

• A matrix with a rank equal to its dimension is a matrix of full
rank
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The Rank of a Matrix (Cont’d)

• A matrix that is less than of full rank is known as a short rank
matrix, and is singular

• Three important results: Rank(A) = Rank (A’);

Rank(A) = Rank (A′)

Rank(AB) ≤ min(Rank(A), Rank(B))

Rank (A′A) = Rank (AA′) = Rank (A)
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The Inverse of a Matrix

• The inverse of a matrix A, where defined and denoted A−1, is
that matrix which, when pre-multiplied or post multiplied by
A, will result in the identity matrix,

i.e. AA−1 = A−1A = I .

• The inverse of a matrix exists only when the matrix is square
and non-singular

• Properties of the inverse of a matrix include:

– I−1 = I

– (A−1)−1 = A

– (A′)−1 = (A−1)′

– (AB)−1 = B−1A−1
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Calculating Inverse of a 2 2 Matrix

• The inverse of a 2×2 non-singular matrix whose elements are(
a b
c d

)
will be

1

ad − bc

(
d −b
−c a

)
• The expression in the denominator, (ad − bc) is the

determinant of the matrix, and will be a scalar
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Calculating Inverse of a 2 2 Matrix (Cont’d)

• If the matrix is (
2 1
4 6

)
the inverse will be

1

8

(
6 −1
−4 2

)
=

(
3
4 −1

8
−1

2
1
4

)
.

• As a check, multiply the two matrices together and it should
give the identity matrix I.
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The Trace of a Matrix

• The trace of a square matrix is the sum of the terms on its
leading diagonal

• For example, the trace of the matrix

A =

(
3 4
7 9

)
Tr(A), is 3 + 9 = 12

• Some important properties of the trace of a matrix are:

– Tr(cA) = cTr(A)

– Tr(A′) = Tr(A)

– Tr(A + B) = Tr(A) + Tr(B)

– Tr(IN) = N
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The Eigenvalues of a Matrix

• Let Π denote a p × p square matrix, c denote a p × 1
non-zero vector, and λ denote a set of scalars

λ is called a characteristic root or set of roots of the matrix
Π? if it is possible to

Πc = λc

• This equation can also be written as Πc = λIpc where Ipc is
an identity matrix, and hence (Π− λIp)c = 0

• Since c 6= 0 by definition, then for this system to have a
non-zero solution, the matrix (Π− λIp)c = 0) is required to
be singular (i.e. to have a zero determinant), and thus

|Π− λI p| = 0
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Calculating Eigenvalues: An Example
• Let Π be the 2 × 2 matrix

Π =

[
5 1
2 4

]
• Then the characteristic equation is |Π− λI p|

=

∣∣∣∣[ 5 1
2 4

]
− λ
[

1 0
0 1

]∣∣∣∣ = 0

=

∣∣∣∣ 5− λ 1
2 4− λ

∣∣∣∣ = (5− λ)(4− λ)− 2 = λ2 − 9λ+ 18

• This gives the solutions λ = 6 and λ = 3.

• The characteristic roots are also known as eigenvalues

• The eigenvectors would be the values of c corresponding to
the eigenvalues.
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Portfolio Theory and Matrix Algebra - Basics

• Probably the most important application of matrix algebra in
finance is to solving portfolio allocation problems

• Suppose that we have a set of N stocks that are included in a
portfolio P with weights w1,w2, . . . ,wN and suppose that
their expected returns are written as E (r1),E (r2), . . . ,E (rN).
We could write the N × 1 vectors of weights, w , and of
expected returns, E (r), as

w =


w1

w2

. . .
wN

 E (r) =


E (r1)
E (r2)
. . .

E (rN)


• The expected return on the portfolio, E (rP) can be calculated

as E (r)′w .

’Introductory Econometrics for Finance’ c© Chris Brooks 2013 64



The Variance-Covariance Matrix

• The variance-covariance matrix of the returns, denoted V
includes all of the variances of the components of the portfolio
returns on the leading diagonal and the covariances between
them as the off-diagonal elements.

• The variance-covariance matrix of the returns may be written

V =


σ11 σ12 σ13 . . . σ1N
σ21 σ22 σ23 . . . σ2N

...
...

σN1 σN2 σN3 . . . σNN


• For example:

– σ11 is the variance of the returns on stock one, σ22 is the
variance of returns on stock two, etc.

– σ12 is the covariance between the returns on stock one and
those on stock two, etc.
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Constructing the Variance-Covariance Matrix

• In order to construct a variance-covariance matrix we would
need to first set up a matrix containing observations on the
actual returns , R (not the expected returns) for each stock
where the mean, r i (i = 1, . . . ,N), has been subtracted away
from each series i.

• We would write

R =


r11 − r̄1 r21 − r̄2 r31 − r̄3 . . . rN1 − r̄N
r12 − r̄1 r22 − r̄2 r32 − r̄3 . . . rN2 − r̄N

...
...

r1T − r̄1 r2T − r̄2 r3T − r̄3 . . . rNT − r̄N


• rij , is the jth time-series observation on the ith stock. The

variance-covariance matrix would then simply be calculated as
V = (R ′R)/(T − 1).
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The Variance of Portfolio Returns

• Suppose that we wanted to calculate the variance of returns
on the portfolio P

– A scalar which we might call VP

• We would do this by calculating

VP = w ′Vw

• Checking the dimension of VP , w ′ is (1× N), V is (N × N)
and w is (N × 1) so VP is (1×N ×N ×N ×N × 1), which is
(1× 1) as required.
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The Correlation between Returns Series

• We could define a correlation matrix of returns, C, which
would be

C =


1 C12 C13 . . . C1N

C21 1 C23 . . . C2N
...

...
CN1 CN2 CN3 . . . 1


• This matrix would have ones on the leading diagonal and the

off-diagonal elements would give the correlations between
each pair of returns

• Note that the correlation matrix will always be symmetrical
about the leading diagonal
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The Correlation between Returns Series (Cont’d)

• Using the correlation matrix, the portfolio variance is

VP = w ′SCSw

where S is a diagonal matrix containing the standard
deviations of the portfolio returns.
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Selecting Weights for the Minimum Variance
Portfolio

• Although in theory the optimal portfolio on the efficient
frontier is better, a variance-minimising portfolio often
performs well out-of-sample

• The portfolio weights w that minimise the portfolio variance,
VP is written

min
w

w ′Vw

• We also need to be slightly careful to impose at least the
restriction that all of the wealth has to be invested (weights
sum to one)

• This restriction is written as w ′· 1N = 1, where 1N is a column
vector of ones of length N.
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Selecting Weights for the Minimum Variance
Portfolio (Cont’d)

• The minimisation problem can be solved to

wMVP =
1N ·V−1

1N ·V−1· 1′N

where MVP stands for minimum variance portfolio
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Selecting Optimal Portfolio Weights

• In order to trace out the mean-variance efficient frontier, we
would repeatedly solve this minimisation problem but in each
case set the portfolio’s expected return equal to a different
target value, R̄

• We would write this as

min
w

w ′Vw subject to w ′· 1N = 1,w ′E (r) = R̄

• This is sometimes called the Markowitz portfolio allocation
problem

– It can be solved analytically so we can derive an exact solution

• But it is often the case that we want to place additional
constraints on the optimisation, e.g.

– Restrict the weights so that none are greater than 10% of
overall wealth
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Selecting Optimal Portfolio Weights (Cont’d)

– Restrict them to all be positive (i.e. long positions only with
no short selling)

• In such cases the Markowitz portfolio allocation problem
cannot be solved analytically and thus a numerical procedure
must be used
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Selecting Optimal Portfolio Weights
• If the procedure above is followed repeatedly for different

return targets, it will trace out the efficient frontier

• In order to find the tangency point where the efficient frontier
touches the capital market line, we need to solve the following
problem

max
w

w ′E (r)− rf

(w ′Vw)
1
2

subject to w ′· 1N = 1

• If no additional constraints are required on weights, this can
be solved as

w =
V−1[E (r)− rf · 1N ]

1′NV
−1[E (r)− rf · 1N ]

• Note that it is also possible to write the Markowitz problem
where we select the portfolio weights that maximise the
expected portfolio return subject to a target maximum
variance level.
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