Applied Microeconometrics I
 Lecture 4: Identification based on observables

Tuomas Pekkarinen

Aalto University

September 23, 2021
Lecture Slides

What did we do last time?

- Role of theory in RCT's
- Example of an "ideal" experiment: Bertrand and Mullainathan
- Fundamentally unidentified questions
- Consistency
- Power calculations
- Randomized block design
- Further examples

General eqiulibrium effects in RCT's

- RCT's are based on the assumption that individual unit's potential outcomes are not affected by treatments assigned to other units
- But in economics we are often interested in treatments where the effect of treatment depends on how many individuals receive the treatment
- General equibrium effects, social feedback
- How to study such effects in RCT's
- Application: Crepon et al (2012)

General eqiulibrium effects in RCT's

- Application: Crepon et al (2012)
- Does job search assistance affect employment prospects of unemployed job-seekers?
- If the effect is large, do treated job-seekers crowd out non-treated job-seekers?
- Solution:
- Within each local job market, assign treatmet randomly
- Across local job markets, assign the share of treated job-seekers randomly
- Estimate the effect of assignment to treatment on the treated
- Estimate the effect of share assigned to treament on the controls

Background

- RCTs solve the selection problem
- With every research question it is not possible to run a controlled experiment
- We need to rely on observational data

Causality without experiments

The identification strategy refers to the manner in which a researcher uses observational data (i.e. data not generated by a randomized trial) to approximate a real experiment.

- Selection based on observables
- Instrumental variables
- Differences-in-differences
- Regression discontinuity design
- The goal is to arrive at a situation where:

$$
E\left[Y_{0 i} \mid D_{i}=1\right]=E\left[Y_{0 i} \mid D_{i}=0\right]
$$

Selection based on observables

- We may not have a controlled experiment, but maybe the treated group and the non-treated group differ only by a set of observable characteristics.
- This assumption, which would justify the causal interpretation of our estimates, is known as the Conditional Independence Assumption (CIA), also called selection-on-observables

The CIA: an example

- To understand the CIA let's begin with an example: master thesis grade $\left(Y_{i}\right)$ and taking this course $\left(C_{i}\right)$, in particular if you take the course ($C_{i}=1$) and if you do not take it ($C_{i}=0$)
- Two possible outcomes $Y_{0 i}, Y_{1 i}$
- But we observe only

$$
Y_{i}=C_{i} Y_{1 i}+\left(1-C_{i}\right) Y_{0 i}=Y_{0 i}+\left(Y_{1 i}-Y_{0 i}\right) C_{i}
$$

- A naive comparison of observed averages yields:

$$
\begin{aligned}
E\left[Y_{1 i} \mid C_{i}=1\right]-E\left[Y_{0 i} \mid C_{i}=0\right]= & E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1\right]+ \\
& E\left[Y_{0 i} \mid C_{i}=1\right]-E\left[Y_{0 i} \mid C_{i}=0\right]
\end{aligned}
$$

- Why do you think the bias is not zero?

Causality and the CIA

- We would like to keep constant relevant observable characteristics (e.g. GPA and affiliation)
- Let us compare the treatment and control group, taking into account observable characteristics:

$$
\begin{array}{r}
E\left[Y_{1 i} \mid X_{i}, C_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, C_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, C_{i}=1\right]+ \\
E\left[Y_{0 i} \mid X_{i}, C_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, C_{i}=0\right]
\end{array}
$$

- The CIA is valid when, conditioning on a set of observed characteristics X_{i} (in the example GPA and affiliation), the bias disappears

$$
E\left[Y_{0 i} \mid X_{i}, C_{i}=1\right]=E\left[Y_{0 i} \mid X_{i}, C_{i}=0\right]
$$

- Hence,

$$
E\left[Y_{1 i} \mid X_{i}, C_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}, C_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid X_{i}, C_{i}=1\right]
$$

Example

EXAMPLE: Case where the CIA holds

		Osku	Mia	Heikki	Maija
Potential grade without the course	$Y_{o i}$	3	5	3	5
Potential grade with the course	$Y_{1 i}$	4	5	4	5
Male	X_{i}	1	0	1	0
Treatment (took the course)	$D_{\boldsymbol{i}}$	1	0	0	0
Realized thesis grade	$Y_{\boldsymbol{i}}$	4	5	3	5
Treatment effect	$Y_{1 i}-Y_{0 i}$	1	0	1	0

What is the observed difference between treated and non-treated?
What is the effect of treatment on the treated?
What is the observed difference between treated and non-treated among men?

Causality and the CIA

- In practice, how relevant is the selection problem?
- Three possible types of factors that affect the outcome variable:
(1) observable factors
(2) unobservable factors not correlated with the treatment $\sqrt{ }$
(3) unobservable factors correlated with the treatment \uparrow
- What drives selection in this example? Do these factors affect the outcome variable
- Information, differences in preferences...
- Does any of these (unobserved) selection factors affect the outcome variable?
- Note: why is this not a problem in an RCT?

Matching: Brief Introduction

- Idea: Compare individuals that are similar in observable characteristics
- Implementation of matching
(1) Divide workers into different categories on the basis of the observable characteristic
(2) Compare means in outcomes over these different categories
- Propensity score matching
(1) Estimate the propensity of the treatment using rich set of observational characteristics (propensity score): $P\left(D_{i} \mid X\right)$
(2) Compare means within cells defined on the basis of the propensity score : $E\left[Y_{i} \mid D_{i}=1, P_{i}=p\right]-E\left[Y_{i} \mid D_{i}=0, P_{i}=p\right]$

Example: Smoking and Mortality

- Cochran 1968, Biometrics

	Yearly death rates per 1,000 person
Non-smokers	13.5
Cigarettes smokers	13.5
Cigars/pipes	17.4

- How should we interpret this descriptive evidence?

Smoking and causal inference in statistics: Ronald Fisher

Example: Smoking and Mortality

- Non-smokers and smokers differ in age

	Mean age (years)
Non-smokers	57.0
Cigarettes smokers	53.2
Cigars/pipes	59.7

- Age is correlated with smoking behaviour, and probably affects also mortality

Example: Smoking and Mortality

- We could compare death rates within age groups (matching by age)
- This way, we neutralize any imbalances in the observed sample related with age

Matching:

- Divide the sample into several age groups
- Compute death rates for smokers and non-smokers by age group
- Compare smokers and non-smokers by age group:

$$
E\left[Y_{i} \mid D_{i}=1, A_{i}=a\right]-E\left[Y_{i} \mid D_{i}=0, A_{i}=a\right]
$$

and calculate the average effect using some weight.

Example: Smoking and Mortality

- Adjusted Average Death Rates

Yearly death rates per 1,000 person
Non-smokers
13.5

Cigarettes smokers 17.7
Cigars/pipes
14.2

- cigarette smokers had relatively low death rates only because they were younger on average
- perhaps the three groups are unbalanced in another variable... (any idea?)

Regression analysis: a brief introduction

In practice, there are many details to worry about when implementing a matching strategy. This leads us to regression analysis.

- Example: How schooling affects wages?
$Y_{i}(s)=\alpha+\rho s_{i}+u_{i}$
- where
$Y_{i}(s)$ is earnings (outcome)
s_{i} is schooling (treatment)
α is the intercept, level of earnings when no schooling, $\left(Y_{i}(0)\right)$ ρ is the slope, how wages vary with schooling?

OLS estimator

- OLS (Ordinary Least Squares) estimator minimizes the sum of squared residuals

$$
\begin{align*}
\tilde{\rho} & =\frac{\sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{2}} \\
& =\frac{\operatorname{Cov}\left(Y_{i}, s_{i}\right)}{\operatorname{Var}\left(s_{i}\right)} \tag{2}
\end{align*}
$$

OLS estimator

- Under some assumptions, OLS is an estimator with some desirable properties:
- Assumptions
(1) Al. Linearity (in parameters): $y_{i}=\alpha+x_{i}^{\prime} \beta+\epsilon_{i}$
(2) A2. Exogeneity: $E\left(\epsilon_{i} \mid x_{i}\right)=0$
(3) A3. No linear dependency (multicollinearity)
(9) A4. $\operatorname{Var}(\epsilon \mid X)=\sigma^{2}$ (homoscedasticity) and $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j} \mid X\right)=0$
- Under these assumptions OLS is unbiased and efficient (BLUE)

If schooling would be randomly assigned...

- However, it is not necessarily an estimate of the causal effect of s_{i} on Y_{i}
- Only when we have random exposure of subjects to the treatment in the population, conditional on observables, we can be sure that regression analysis provides a causal estimate

Endogeneity

- When the CIA is not satisfied we say that s is endogenous
- More generally, an explanatory variable $s_{j i}$ is said to be endogenous if it is correlated with unobservable factors that affect the outcome variable (error term)
- Three main cases:
(1) Omitted variable
(2) Measurement error
(3) Simultaneity

Omitted variable bias

- Let us assume that the "true" model states that wages are affected by schooling and ability

$$
y_{i}=\alpha+\rho s_{i}+\gamma a_{i}+e_{i}
$$

where e_{i} is uncorrelated with s_{i} and a_{i}

- Unfortunately, we do not have a good measure for ability, and thus can only estimate the following short regression

$$
y_{i}=\tilde{\alpha}+\tilde{\rho} s_{i}+u_{i}
$$

where $u_{i}=\gamma a_{i}+e_{i}$

- Generally $\tilde{\rho}$ and ρ are different, unless:
(1) $\gamma=0$
(2) s_{i} and a_{i} are uncorrelated in the sample
- Let us see in which sense they are different

What happens if we omit a variable \odot

- Let us calculate the OLS estimator of $\tilde{\rho}$:

$$
y_{i}=\tilde{\alpha}+\tilde{\rho} s_{i}+u_{i}
$$

where

- OLS estimate

$$
\tilde{\rho}_{o l s}=\rho+\frac{\operatorname{Cov}(s, u)}{\operatorname{Var}(s)}
$$

- but remember that

$$
u_{i}=\gamma a_{i}+e_{i}
$$

What happens if we omit a variable

- If we take the conditional expectation, and recall that $\operatorname{Cov}(e, s)=0$, we get (do it!):

$$
\tilde{\rho}_{o l s}=\rho+\underbrace{\gamma \frac{\operatorname{Cov}(s, a)}{\operatorname{Var}(s)}}_{\text {omitted variable bias }}
$$

- $\Rightarrow \tilde{\rho}$ is generally biased for ρ
- Two cases in which there is no omitted variable bias:
(1) $\gamma=0$ (a is not in the true model!)
(2) s and a are uncorrelated

What happens if we omit a variable

	$\operatorname{Corr}(s, a)>0$	$\operatorname{Corr}(s, a)<0$
$\gamma>0$	POSITIVE BIAS	NEGATIVE BIAS
$\gamma<0$	NEGATIVE BIAS	POSITIVE BIAS

Is adding controls always a good idea?

- CIA suggests that one way to deal with the omitted variable bias would be to include additional controls so that we are able to control for all the omitted variables
- However, adding controls may not always be a good idea
- Bad controls are variables that are themselves potential outcome variables in the notional experiment at hand
(1) Controlling for occupation in college-earnings regression
(2) IQ after schooling as proxy for ability in schooling-earnings regression (late proxy)

Is adding controls always a good idea?

- Let's see an example: controlling for occupation
- Occupation is affected by college. Does it make sense to look at the effect of college on earnings conditional on occupation?
- W_{i} is a dummy for white collar jobs, C_{i} a dummy for colleges, and Y_{i} earnings
- Counterfactual outcomes: $Y_{0 i}, Y_{1 i}, W_{0 i}, W_{1 i}$
- As usual we observe:

$$
\begin{aligned}
Y_{i} & =C_{i} Y_{1 i}+\left(1-C_{i}\right) Y_{0 i} \\
W_{i} & =C_{i} W_{1 i}+\left(1-C_{i}\right) W_{0 i}
\end{aligned}
$$

- Let's assume that C_{i} is randomly assigned \Rightarrow no troubles in estimating its causal effect on both Y_{i} and W_{i}
- Let us assume that we want to see the impact of C_{i} on Y_{i} for white collar workers

Bad controls

- Given the assumptions we can easily estimate:

$$
E\left[Y_{i} \mid C_{i}=1\right]-E\left[Y_{i} \mid C_{i}=0\right]=E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1\right]
$$

and

$$
E\left[W_{i} \mid C_{i}=1\right]-E\left[W_{i} \mid C_{i}=0\right]=E\left[W_{1 i}-W_{0 i} \mid C_{i}=1\right]
$$

- But we want to know

$$
E\left[Y_{1 i}-Y_{0 i} \mid C_{i}=1, W_{i}=1\right]
$$

Bad controls

- We can either control for W_{i} in a regression or regress Y_{i} on C_{i} in the sample where $W_{i}=1$:

$$
\begin{gathered}
E\left[Y_{i} \mid W_{i}=1, C_{i}=1\right]-E\left[Y_{i} \mid W_{i}=1, C_{i}=0\right]= \\
E\left[Y_{1 i} \mid W_{1 i}=1, C_{i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1, C_{i}=0\right]
\end{gathered}
$$

- By the joint independence of $\left\{Y_{1 i}, W_{1 i}, Y_{0 i}, W_{0 i}\right\}$ and C_{i} :

$$
\begin{gathered}
E\left[Y_{1 i} \mid W_{1 i}=1, C_{i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1, C_{i}=0\right]= \\
E\left[Y_{1 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right]
\end{gathered}
$$

Bad controls

- Calculating the above we see the problem:

$$
\begin{gathered}
E\left[Y_{1 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right] \\
=E\left[Y_{1 i}-Y_{0 i} \mid W_{1 i}=1\right]+\left\{E\left[Y_{0 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right]\right\}
\end{gathered}
$$

- The bias is due to the fact that college is likely to change the composition of the pool of white collars
- You need an explicit model of the links between college, occupation, and earning

Example

EXAMPLE: Case with a bad control

		Osku	Mia	Heikki	Maija
Potential grade without the course	$Y_{o i}$	3	5	3	5
Potential grade with the course	$Y_{1 i}$	4	4	4	5
Seminar attendance without the course	$W_{o i}$	0	1	0	1
Seminar attendance with the course	$W_{1 i}$	1	1	1	1
Treatment (took the course)	D_{i}	1	0	0	1
Seminar attendance	W_{i}	1	1	0	1
Realized thesis grade	Y_{i}	4	5	3	5
Treatment effect on grades	$Y_{1 i}-Y_{0 i}$	1	-1	1	0
Treatment effect on seminar attendance	$W_{1 i}-W_{0 i}$	1	0	1	0

Check that the observed differences between treated and the non-treated are same as the effect of treatment on treated for both Y and W !

What is the observed difference of Y between treated and the non-treated when $\mathrm{W}=1$?

Is this equal to the effect of treatment on the treated when $W_{1 i}=1$?
Is $E\left[Y_{0 i} \mid W_{1 i}=1\right]=E\left[Y_{0 i} \mid W_{0 i}=1\right]$ in this case?

OLS estimator

- The exogeneity assumption, $E\left(\epsilon_{i} \mid x_{i}\right)=0$, implies that $\operatorname{Cov}\left(x_{i}, \epsilon_{i}\right)=0$
- Then, the OLS estimator of β :

$$
\begin{aligned}
\hat{\beta}_{O L S} & =\frac{\operatorname{Cov}(y, x)}{\operatorname{Var}(x)} \\
& =\frac{\operatorname{Cov}(\alpha+\beta x+\epsilon, x)}{\operatorname{Var}(x)} \\
& =\beta \frac{\operatorname{Var}(x)}{\operatorname{Var}(x)}+\frac{\operatorname{Cov}(x, \epsilon)}{\operatorname{Var}(x)} \\
& =\beta
\end{aligned}
$$

Omitted variable bias

$$
\begin{aligned}
\hat{\rho}_{O L S} & =\frac{\operatorname{Cov}(y, s)}{\operatorname{Var}(s)} \\
& =\frac{\operatorname{Cov}(\tilde{\alpha}+\tilde{\rho} s+u, s)}{\operatorname{Var}(s)} \\
& =\frac{\operatorname{Cov}(\alpha+\rho s+\gamma a+e, s)}{\operatorname{Var}(s)} \\
& =\rho+\gamma \frac{\operatorname{Cov}(a, s)}{\operatorname{Var}(s)}
\end{aligned}
$$

Bad controls

$$
\begin{aligned}
& E\left[Y_{i} \mid W_{i}=1, C_{i}=1\right]-E\left[Y_{i} \mid W_{i}=1, C_{i}=0\right] \\
= & E\left[Y_{1 i} \mid W_{1 i}=1, C_{i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1, C_{i}=0\right] \\
= & E\left[Y_{1 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right] \\
= & E\left[Y_{1 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{1 i}=1\right]+E\left[Y_{0 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right] \\
= & E\left[Y_{1 i}-Y_{0 i} \mid W_{1 i}=1\right]+E\left[Y_{0 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right]
\end{aligned}
$$

