Applied Microeconometrics I

Lecture 4: Identification based on observables

Tuomas Pekkarinen

Aalto University

September 23, 2021
Lecture Slides



What did we do last time?

Role of theory in RCT’s
Example of an "ideal" experiment: Bertrand and Mullainathan

Fundamentally unidentified questions

Consistency
Power calculations

Randomized block design

Further examples



General eqiulibrium effects in RCT’s

@ RCT'’s are based on the assumption that individual unit’s
potential outcomes are not affected by treatments assigned to
other units

@ Butin economics we are often interested in treatments where
the effect of treatment depends on how many individuals
receive the treatment

@ General equibrium effects, social feedback
e How to study such effects in RCT’s
@ Application: Crepon et al (2012)



General eqiulibrium effects in RCT’s

@ Application: Crepon et al (2012)

@ Does job search assistance affect employment prospects of
unemployed job-seekers?

o Ifthe effect is large, do treated job-seekers crowd out
non-treated job-seekers?

e Solution:

e Within each local job market, assign treatmet randomly
e Across local job markets, assign the share of treated job-seekers
randomly

o Estimate the effect of assignment to treatment on the treated

o Estimate the effect of share assigned to treament on the
controls



Background

@ RCTs solve the selection problem

e With every research question it is not possible to run a
controlled experiment

@ We need to rely on observational data



Causality without experiments

The identification strategy refers to the manner in which a
researcher uses observational data (i.e. data not generated by a
randomized trial) to approximate a real experiment.

@ Selection based on observables
o Instrumental variables

o Differences-in-differences

Regression discontinuity design

The goal is to arrive at a situation where:

EY;|D; =1] = E[Yy;|D; = 0]



Selection based on observables

@ We may not have a controlled experiment, but maybe the
treated group and the non-treated group differ only by a set of
observable characteristics.

@ This assumption, which would justify the causal interpretation
of our estimates, is known as the Conditional Independence
Assumption (CIA), also called selection-on-observables



The CIA: an example

o To understand the CIA let’s begin with an example: master
thesis grade (Y;) and taking this course (C;), in particular if you
take the course (C; = 1) and if you do not take it (C; = 0)

@ Two possible outcomes Yp;, Y7;
@ But we observe only
Yi=CiY1;+ (1 - Ci)Yoi = Yoi + (Y1; — Y0:) C;

@ A naive comparison of observed averages yields:

EW;|C; =11 - E[Yp;|C; =01 = E[Y1; = Yo;|C; = 1] +
E[Y0i|ci =1] _E[Y()ilci =0]

@ Why do you think the bias is not zero?



Causality and the CIA

@ We would like to keep constant relevant observable
characteristics (e.g. GPA and affiliation)

@ Let us compare the treatment and control group, taking into
account observable characteristics:

EV1ilXi, C; = 1] - E[Yoil X;, C; = 0] = E[Y1; — Y0l X;, Ci = 1] +
ElYolX;,C; =1] — E[Yp;1X;,C; = 0]
1)
@ The CIA is valid when, conditioning on a set of observed
characteristics X; (in the example GPA and affiliation), the bias
disappears
E[Yyi1X;, Ci = 1] = E[Y0;lX;, C; = 0]
@ Hence,
E[1ilX;, Ci = 1] - E[Yo0;lXi, Ci = 0] = E[Y1; — Y0i1 X;, Ci = 1]



Example

EXAMPLE: Case where the CIA holds

Osku Mia Heikki Maija
Potential grade Yoi 3 5 3 5
without the
course
Potential grade Yy 4 5 4 5
with the course
Male X 1 0 1 0
Treatment D; 1 0 0 0
(took the
course)
Realized thesis Y; 4 5 3 5
grade | |
Treatment Y —Yo; 1 0 1 0
effect

What is the observed difference between treated and non-treated?
What is the effect of treatment on the treated?

What is the observed difference between treated and non-treated among men?



Causality and the CIA

o In practice, how relevant is the selection problem?

o Three possible types of factors that affect the outcome
variable:
@ observable factors
© unobservable factors not correlated with the treatment
© unobservable factors correlated with the treatment /\
@ What drives selection in this example? Do these factors affect
the outcome variable
e Information, differences in preferences...
e Does any of these (unobserved) selection factors affect the
outcome variable?

o Note: why is this not a problem in an RCT?



Matching: Brief Introduction

@ Idea: Compare individuals that are similar in observable
characteristics
o Implementation of matching

@ Divide workers into different categories on the basis of the
observable characteristic
© Compare means in outcomes over these different categories

@ Propensity score matching

@ Estimate the propensity of the treatment using rich set of
observational characteristics (propensity score): P(D;|X)

© Compare means within cells defined on the basis of the
propensity score : E[Y;|D; =1,P; = p] — E[Y;|D; =0, P; = p]



Example: Smoking and Mortality

@ Cochran 1968, Biometrics

Yearly death rates per 1,000 person

Non-smokers 13.5
Cigarettes smokers 13.5
Cigars/pipes 17.4

e How should we interpret this descriptive evidence?



Smoking and causal inference in statistics: Ronald Fisher
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Example: Smoking and Mortality

o Non-smokers and smokers differ in age

Mean age (years)

Non-smokers 57.0
Cigarettes smokers 53.2
Cigars/pipes 59.7

@ Age is correlated with smoking behaviour, and probably affects
also mortality



Example: Smoking and Mortality

@ We could compare death rates within age groups (matching by
age)

e This way, we neutralize any imbalances in the observed
sample related with age

Matching:
e Divide the sample into several age groups

e Compute death rates for smokers and non-smokers by age
group
o Compare smokers and non-smokers by age group:

ElYi|D; =1,A; = al - E[Y;|D; =0, A; = al
and calculate the average effect using some weight.



Example: Smoking and Mortality

@ Adjusted Average Death Rates

Yearly death rates per 1,000 person

Non-smokers 13.5
Cigarettes smokers 17.7
Cigars/pipes 14.2

o cigarette smokers had relatively low death rates only because
they were younger on average

e perhaps the three groups are unbalanced in another variable...
(any idea?)



Regression analysis: a brief introduction

In practice, there are many details to worry about when
implementing a matching strategy. This leads us to regression
analysis.
e Example: How schooling affects wages?
Yi(s)=a+ps;+u;
e where
Y;(s) is earnings (outcome)
s; is schooling (treatment)
«a is the intercept, level of earnings when no schooling, (Y;(0))
p is the slope, how wages vary with schooling?



OLS estimator

@ OLS (Ordinary Least Squares) estimator minimizes the sum of
squared residuals

Y (si—-9(Vi-Y)
i=1

Y (si-3)?
i=1

Cov(Yj, $i)
= — )
Var(s;)




OLS estimator

@ Under some assumptions, OLS is an estimator with some
desirable properties:
@ Assumptions
@ AL Linearity (in parameters): y; = a + X, +¢;
© A2. Exogeneity: E(e;|x;) =0
© A3. No linear dependency (multicollinearity)
O A4. Var(e|X) = o2 (homoscedasticity) and Cov(e;,€;|X) =0

@ Under these assumptions OLS is unbiased and efficient (BLUE)



If schooling would be randomly assigned...

o However, it is not necessarily an estimate of the causal effect of
s;ony;

@ Only when we have random exposure of subjects to the
treatment in the population, conditional on observables, we
can be sure that regression analysis provides a causal estimate
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Endogeneity

@ When the CIA is not satisfied we say that s is endogenous

@ More generally, an explanatory variable s;; is said to be
endogenous if it is correlated with unobservable factors that
affect the outcome variable (error term)

@ Three main cases:

© Omitted variable

© Measurement error
© Simultaneity
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Omitted variable bias

@ Letus assume that the "true" model states that wages are
affected by schooling and ability

yi=at+psitya;+e;
where e; is uncorrelated with s; and a;

e Unfortunately, we do not have a good measure for ability, and
thus can only estimate the following short regression

Yi=a+psi+u;
where u; =ya; +e;
@ Generally p and p are different, unless:

Q vy=0

@ s; and a; are uncorrelated in the sample

@ Let us see in which sense they are different



What happens if we omit a variable @

@ Let us calculate the OLS estimator of p:
Yi= a+ ﬁSi + U;
where

@ OLS estimate

~ _ Couv(s,u)
Pols =P+ Var(s)

@ but remember that

ui=vya;+e;
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What happens if we omit a variable

o If we take the conditional expectation, and recall that
Cov(e, s) =0, we get (do it!):
Cov(s,a)

Y Var(s)

—_——

omitted variable bias

Pois=p+

@ = p is generally biased for p
@ Two cases in which there is no omitted variable bias:

© 7Y =0 (aisnotin the true model!)
@ sand a are uncorrelated



What happens if we omit a variable

Corr(s,a)>0 Corr(s,a)<0
Y>0 POSITIVE BIAS NEGATIVE BIAS
Y<0 NEGATIVE BIAS POSITIVE BIAS




Is adding controls always a good idea?

o CIA suggests that one way to deal with the omitted variable
bias would be to include additional controls so that we are able
to control for all the omitted variables

e However, adding controls may not always be a good idea

@ Bad controls are variables that are themselves potential
outcome variables in the notional experiment at hand

@ Controlling for occupation in college-earnings regression
@ 1Q after schooling as proxy for ability in schooling-earnings
regression (late proxy)



Is adding controls always a good idea?

o Let’s see an example: controlling for occupation

@ Occupation is affected by college. Does it make sense to look at
the effect of college on earnings conditional on occupation?

e W; is a dummy for white collar jobs, C; a dummy for colleges,
and Y; earnings

e Counterfactual outcomes: Yy;, Y1;, Woi, Wh;
@ Asusual we observe:
Yi=CiYi+(1-Cy) Yy
Wi = CiWy; + (1 - C;y) Wy;
@ Let’s assume that C; is randomly assigned = no troubles in
estimating its causal effect on both Y; and W;

@ Let us assume that we want to see the impact of C; on Y; for
white collar workers



Bad controls

o Given the assumptions we can easily estimate:
E[Y;|C; = 1] - E[Y;|C; = 0] = E[Y1; — Yo;]C; = 1]
and
E[W;|C;i = 1] - E[W;|C; = 0] = E[W1; — Wp;|C; = 1]
e But we want to know

E[Y1; - YpilCi =1, W; = 1]



Bad controls

@ We can either control for W; in a regression or regress Y; on C;
in the sample where W; = 1:

E[Y;|W; =1,C; =1] - E[Y;|W; =1,C; =0] =
E[Y1;1W1; =1,C; = 1] = E[Yp;|Wp; = 1,C; = 0]
@ By the joint independence of {Y7;, W1;, Yo, Wp;} and C;:

EY1;IW1; =1,C; =1] - E[Yp;I1Wp; =1,C; =0] =
EY1;IWy; =1] = E[Yy; [ Wp; = 1]
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Bad controls @

@ Calculating the above we see the problem:

EY1;IWy; =1] = E[Yy; | Wp; = 1]
= E[Y1; — Yo;I|Wy; = 1] +{E[Yp;|Wh; = 1] = E[Yp;| Wp; = 11}

o The bias is due to the fact that college is likely to change the
composition of the pool of white collars

@ You need an explicit model of the links between college,
occupation, and earning



Example

EXAMPLE: Case with a bad control

Osku | Mia | Heikki | Maija
Potential grade without the course Yoi 3 5 3 5
Potential grade with the course Yqi 4 4 4 5
Seminar attendance without the course Wi 0 1 0 1
Seminar attendance with the course Wy 1 1 1 1
Treatment (took the course) D; 1 0 0 1
Seminar attendance w; 1 1 0 1
Realized thesis grade Y; 4 5 3 5
Treatment effect on grades Y —Yoi 1 -1 1 0
Treatment effect on seminar attendance | W,; — Wy;| 1 0 1 0

Check that the observed differences between treated and the non-treated are same
as the effect of treatment on treated for both Y and W!

What is the observed difference of Y between treated and the non-treated when
w=1?
Is this equal to the effect of treatment on the treated when W; = 1?

Is E[Yo;|Wq; = 1] = E[Y(;|Wy; = 1] in this case?



OLS estimator @&

o The exogeneity assumption, E(e;|x;) = 0, implies that
Cov(x;,e;) =0
@ Then, the OLS estimator of :

5 _ Cov(y,x)

ﬁ OLS = Var(x)
_ Cov(a+px+e,x)
- Var(x)
_ ﬁVar(x) Cov(x,€)
- Var(x) Var(x)
= p
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Omitted variable bias &

A _ Cov(y,9)

POLS = TVar(s
Cov(a+ps+u,s)
Var(s)
Cov(a+ps+ya+e,s)
Var(s)

_ Covl(a,s)
= ptY Var(s)




Bad controls @

E[Y;|W; =1,C; =1] - E[Y;|W; =1,C; =0]
= E[N;IWy;=1,C; = 1] - E[Yy;|Wp; = 1,C; = 0]
= E[Y;IWy; =1] = E[Yy;|Wy; = 1]
= E[Y;|Wy; =1] = E[Yy;IWh; = 1] + E[Yo;|Wh; = 1] — E[Yp;|Wp; = 1]
= E[Y1; — YoilW1; = 1] + E[Yy;IWh; = 1] — E[Yp;|Wo; = 1]



	Identification based on observables

