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Plan for today

• Background 
• What is computer vision? 
• Why to study computer vision? 

• Overview of the course 

• Lecture 1: Image formation

Credits: Material for slides borrowed from Victor Prisacariu, Andrew Zisserman, Esa Rahtu, James Hays, Derek 
Hoiem, Svetlana Lazebnik, Steve Seitz, David Forsyth, and others



Course personnel

• Lecturer:  
Juho Kannala  
juho.kannala@aalto.fi 

• Main course assistant:  
Xiaotian Li 
firstname.lastname@aalto.fi 



A few words about me

Juho Kannala 

Assistant Professor of Computer vision 
• PhD, University of Oulu 2010 

• Professor at Aalto since 2016 

• Working with computer vision since 2000  

• Recent projects and other info available on my homepage: https://users.aalto.fi/~kannalj1/ 

https://users.aalto.fi/~kannalj1/


Motivation - what is computer vision?



Make computers understand images

• What kind of scene? 

• Where are the cars? 

• How far are the buildings? 

• Where are the cars going? 

• …..



Many data modalities

• 2D or 3D still images  

• Video frames 

• X-ray  

• Ultra-sound 

• Microscope 

• ….

A Pot-Pourri of 2D Signals

aerial image synthetic aperture radar (SAR)

X-ray inspection image Magnetic Resonance Image (MRI)

A Pot-Pourri of 2D Signals

aerial image synthetic aperture radar (SAR)

X-ray inspection image Magnetic Resonance Image (MRI)

A Pot-Pourri of 2D Signals
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X-ray inspection image Magnetic Resonance Image (MRI)
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What kind of information can be extracted?

Geometric information

building

person
trashcan car car

ground

tree tree

sky

door
window

building

roof

chimney

Outdoor scene
City European

…

Semantic information Geometric information



What do we have here?

… seems pretty easy…



Wrong! Very hard big data problem…

• Hardware perspective: 
• RGB stereo images with 30 frames per second -> 100s MB/s data stream. 
• Non-trivial processing per each byte. 
• Massive image collections. 

• Mathematical perspective 
• Information is highly implicit or lost by perspective projection 
• 2D -> 3D mapping is ill-posed and ill-conditioned -> need to use constraints



Wrong! Very hard big data problem…

• Artificial intelligence perspective 
• Images have uneven information content  
• Computational visual semantics is hard (what does visual stuff mean exactly?) 
• If we have limited time, what is the important visual stuff right now? 

Still a massive challenge - if we want genuine autonomy.



Natural vision 

• Humans see effortlessly



Natural vision

• Humans see effortlessly, but… it is very hard work for our brains! 
• There are billions of neurons in human brain 
• Years of evolution generated hardwired priors. 

So why bother?  
What are the advantages?



Why computer vision matters?

• Engineering point of view - Computer Vision helps to 
solve many practical problems: business potential 

• Scientific point of view - Human kind of visual system is 
one of the grand challenges of Artificial Intelligence (AI) 

• AI itself is a grand challenge of computing 



Why computer vision matters?

• Safety 

• Health 

• Security 

• Fun 

• Access 

• ….



Computer vision is already here

• You are surrounded by  
devices using computer vision 

• Imagine what can be done  
with already installed cameras!

Computer vision is already here

• You are already surrounded by devices using computer vision
• Imagine what can be done with already installed/available

cameras!

video: Wii remote hacks
5



Motivation - Success stories



Recognizing “simple” patterns



Face recognition



Object detection and recognition



Reconstruction: 3D from photo collections

The Visual Turing test for Scene Reconstruction,  
Shan, Adams, Curless, Furukawa, Seitz, in 3DV 2013. YouTube video.

https://www.youtube.com/watch?v=NdeD4cjLI0c


A recent commercial 3D reconstruction system

YouTube

https://www.youtube.com/user/Acute3D


Robotics

NASA’s Mars Rover 
See “Computer Vision on Mars”

Robocup 
See www.robocup.org 

STAIRS at Stanford 
Saxena et al. 2008 

http://www.ri.cmu.edu/pubs/pub_5719.html
http://www.robocup.org
http://stair.stanford.edu/


Self-driving cars (Nvidia @ CES 2016)



Visual odometry and SLAM



Augmented Reality (AR) and Virtual Reality (VR)



Image generation

A style-based generator architecture for generative adversarial networks. Karras, Laine, Aila. CVPR 2019.



Current state of the affairs

• Many of the previous examples are less than 5 years old! 

• Many new applications to appear in the next 5 years 

• Strong open source culture 
• Many recent state-of-the-art methods are freely available 
• See papers from top conferences like CVPR, ECCV, ICCV, and NeurIPS



Rapidly growing areaCVPR Papers
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Rapidly growing area 

Ref. Google Scholar top publications.

https://scholar.google.com/citations?view_op=top_venues&hl=en


Rapidly growing area - substantial commercial interestThank You to Our Sponsors!

CVPR 2018 sponsors



Plenty of job opportunities

• Companies are looking for computer vision and deep learning experts. 

• Big Internet players are investing heavily (Apple, Google, Facebook, 
Microsoft, Baidu, Tencent, …) as well as car industry (Tesla, BMW,…) 

• Strong imaging ecosystem also in Finland



Specifics of this course



Course textbooks

• Szeliski: Computer Vision 
• Full-copy freely available 

• Hartley & Zisserman: Multiple 
View Geometry in Computer Vision 

• Available as an e-book via library 

• Forsyth & Ponce: Computer Vision 
• Full-copy freely available

http://szeliski.org/Book/
https://courses.cs.washington.edu/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf


What will you learn on this course?

• Course content (numbers refer to chapters in Szeliski’s book,1st edition): 
• Image formation and processing (2, 3) 
• Feature detection and matching (4) 
• Feature based alignment and image stitching (6,9) 
• Optical flow and tracking (8) 
• Basics of image classification and convolutional neural networks 
• Object recognition and detection (14) 
• Structure from motion, stereo and 3D reconstruction (7, 11, 12)



What will you NOT learn on this course?

• Software packages 
• PyTorch, TensorFlow, Keras, Caffe, etc. 
• We have simple exercises with Python/Matlab though 

• In-depth deep learning 
• Tweaking architectures, loss functions, etc. 
• Note that there exists a separate deep learning course (CS-E4890)  

• All the bells and whistles in the state-of-the-art systems 
• We concentrate on the basic concepts (get them right and the rest is easier for you)



Organization

• Lectures on Mondays at 10-12 (12 lectures) 

• Exercises on Fridays at 12-14 (12 sessions) 
• The solutions of weekly homework assignments should be returned before the session 
• The solutions are presented in the session   

• Guidance available if needed 
• Slack and teacher’s receptions (see MyCourses) 

• Virtual presence is not rewarded, only returned homework counts



Requirements

• Get more than 0 points from at least 8 exercise rounds  
(i.e. solve at least 1 task from 8 different weekly rounds) 

• Pass the exam



Hints

• Doing homework takes time but is often a good way to learn in depth 

• Try to do more than the minimum - homework points are taken into 
account in the grading (i.e. weighted exercise points are added to 
exam points) 

• Note that the amount of work and bonus points varies a bit between 
weeks - exercises are published early so that you can do them in 
advance if needed



Questions at this point?



Lecture 1: Camera model



Relevant reading

• Chapters 2, 3, and 6 in [Hartley & Zisserman] 
• Comprehensive presentation of the core content 

• Chapter 2 in [Szeliski] 
• Broader overview of the image formation



This is (a picture of) a catThis	is	(a	picture	of)	my	cat

Cat	nose
x

520

520

0

x	=	 295308

Credits: Victor Prisacariau



Cat lives in a 3D worldMy	cat	lives	in	a	3D	world

+ =
-.
-/
-0

1 = 2.
2/

The	point	+ in	world	space	projects	to	the	point	1 in	image	space

The point X in world space projects to the point x in image space.
Credits: Victor Prisacariau



Going from X in 3D to x in 2D
Going	from	X	in	3D	to	x	in	2D

+ =
-.
-/
-0

1 = 2.
2/

?

film/sensor cat

Output	would	be	blurry	L if	film	just	exposed	to	the	cat

The output would be blurry if film just exposed to the cat.



Pinhole camera
Pinhole	Camera

cat

All	rays	pass	through	the	center	of	projection (a	single	point).
Image	forms	on	the	image	plane.

Image	Plane pinhole

+ =
-.
-/
-0

1 = 2.
2/

?

All rays passing through a single point (center of projection)



Pinhole	Camera

1 = 2.
2/

o

+ =
-.
-/
-0f

image	plane

f	– focal	length
o	– camera	origin
p	– principal	point

p Optical	axis

The	3D	point	+ =
-.
-/
-0

is	imaged	into	1 = 2.
2/ as:

2.
2/ =

3 4546
3 4746

Pinhole camera



Pinhole camera



What happens in the projection?

• Projection from 3D to 2D -> information is lost 

• What properties are preserved? 
• Straight lines 
• Incidence 

• What properties are not preserved? 
• Angles 
• Lengths



Projective geometry - what is lost?

Which is closer?

Who is taller?



Length is not preserved



Angles are not preserved

Perpendicular?

Parallel?



Straight lines are still straight



Vanishing points and lines

• Parallel lines in the world  
intersect at a “vanishing point”



Constructing the vanishing point of a line

image plane

camera
center

line in the scene

vanishing point



Vanishing points and lines

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

All parallel lines will have the same vanishing point.



Homogenous coordinates

• The projection x = fX/x3 is non linear! 

• Can be made linear using 
homogenous coordinates 

• Homogenous coordinates allow for 
transforms to be concatenated easily

Pinhole	Camera

1 = 2.
2/

o

+ =
-.
-/
-0f

image	plane

f	– focal	length
o	– camera	origin
p	– principal	point

p Optical	axis

The	3D	point	+ =
-.
-/
-0

is	imaged	into	1 = 2.
2/ as:

2.
2/ =

3 4546
3 4746



Homogenous coordinates

Conversion to homogenous coordinates

Conversion from homogenous coordinates



Invariance to scaling
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E.g. [1,2,3] is the same as [3,6,9] and both represent  
the same inhomogeneous point [0.33,0.66]. 



Basic geometry in homogenous coordinates

• Line equation: ax+by+c=0 

• A pixel p in homogenous coordinates:  

• Line is given by cross product of two points  

• Intersection of two lines is given by cross  
product of the lines
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3D Euclidean transformation

• Cat moves through 3D space 

• The movement of the nose can be  
described using an Euclidean Transform

3D	Euclidean	transforms:	inhomogeneous coordinates

• My	cat	moves	through	3D	
space.

• The	movement	of	the	tip	of	
the	nose	can	be	described	
using	an	Euclidean	transform:

+0×.; = <0×0+0×. + >0×.
rotation translation

3D	Euclidean	transforms:	inhomogeneous coordinates

• My	cat	moves	through	3D	
space.

• The	movement	of	the	tip	of	
the	nose	can	be	described	
using	an	Euclidean	transform:

+0×.; = <0×0+0×. + >0×.
rotation translation



Building the 3D rotation matrix R

• R can be build from various representations (Euler ang., quaternion) 

• Euler angles represent the rotation using three parameters, one for 
each axis

Building	<
• < captures	rotation	and	can	be	built	from	various	types	of	rotation	

representations	(Euler	angles,	quaternions,	etc.).
• Euler	angles	capture	the	angles	of	rotation	axis	using	3	parameters,	one	for	

each	axis.

-; = Jv-u =
cos ]v sin ]v 0
− sin ]v cos ]v 0

0 0 1
-w

-;; = Jb-; =
cos ]b 0 − sin ]b
0 1 0

sin ]b 0 cos ]b
-;

-x = Ja-;; =
1 0 0
0 cos ]a ± sin ]a
0 ∓ sin ]a cos ]a

-;;

<{u = <a<b<v Order	matters!



3D Euclidean transformation

• Concatenation of successive transforms is a mess!

3D	Euclidean	transforms:	inhomogeneous coordinates

• Euclidean	transform:	+0×.; = <0×0+0×. + >0×.

• Concatenation	of	successive	transform	is	a	
mess!

• +. = <.+ + >.
• +/ = </+. + >/
• +/ = </ <.+ + >. + >/ = </<. + + </>? + >/ .



Homogenous coordinates save the day!

• Replace 3D points       with homogenous versions 

• The Euclidean transform becomes 

• Transformation can now be concatenated by matrix multiplication

3D	Euclidean	transforms:	homogeneous coordinates

• We	replace	the	3D	points	
-
A
B

with	a	four	vector	

-
A
B
1

.

• The	Euclidean	transform	becomes:
+′
1 = E +

1 = < >
FG 1

+
1

• Transformations	can	now	be	concatenated	by	matrix	
multiplication:
+.
1 = E.H +H

1 			 +/1 = E/. +.
1 → +/

1 = E/.E.H +F
1

3D	Euclidean	transforms:	homogeneous coordinates

• We	replace	the	3D	points	
-
A
B

with	a	four	vector	

-
A
B
1

.

• The	Euclidean	transform	becomes:
+′
1 = E +

1 = < >
FG 1

+
1

• Transformations	can	now	be	concatenated	by	matrix	
multiplication:
+.
1 = E.H +H

1 			 +/1 = E/. +.
1 → +/

1 = E/.E.H +F
1

3D	Euclidean	transforms:	homogeneous coordinates

• We	replace	the	3D	points	
-
A
B
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-
A
B
1

.

• The	Euclidean	transform	becomes:
+′
1 = E +

1 = < >
FG 1

+
1

• Transformations	can	now	be	concatenated	by	matrix	
multiplication:
+.
1 = E.H +H

1 			 +/1 = E/. +.
1 → +/

1 = E/.E.H +F
1

3D	Euclidean	transforms:	homogeneous coordinates

• We	replace	the	3D	points	
-
A
B

with	a	four	vector	

-
A
B
1

.

• The	Euclidean	transform	becomes:
+′
1 = E +

1 = < >
FG 1

+
1

• Transformations	can	now	be	concatenated	by	matrix	
multiplication:
+.
1 = E.H +H

1 			 +/1 = E/. +.
1 → +/

1 = E/.E.H +F
1



More 3D-3D and 2D-2D transformationsMore	3D-3D	and	2D-2D	Transforms

Projective	(15	dof):
-′.
-′/
-′0
-′L

= UL×L
-.
-/
-0
-L

Affine	(12	dof):
+′
1 = V0×0 >0

FG 1
+
1

Similarity	(7	dof):
+′
1 = W<0×0 >0

FG 1
+
1

Euclidean	(6	dof):
+′
1 = <0×0 >0

FG 1
+
1

Projective	(aka	Homography,	8	dof):

2;.
2;/
2;0

= X0×0
2.
2/
20

Affine	(6	dof):
1′
1 = VY×Y >/

FG 1
1
1

Similarity	(5	dof):
1′
1 = W</×/ >/

FG 1
1
1

Euclidean	(4	dof):
1′
1 = </×Y >Y

FG 1
1
1

3

4



Examples of 2D-2D transforms2D-2D	Transform	Examples

cos ] − sin ] `a
sin ] cos ] `b
0 0 1

ccos ] − csin ] `a
csin ] ccos ] `b
0 0 1

d.. d./ `a
d/. d// `b
0 0 1

ℎ.. ℎ./ ℎ./
ℎ/. ℎ// ℎ/0
ℎ0. ℎ0/ ℎ00

Euclidean	
3	DoF

Similarity
4	DoF

Affine
6	DoF

Projective
8	DoF



Perspective transformation (3D-2D)Pinhole	Camera

1 = 2.
2/

o

+ =
-.
-/
-0f

image	plane

f	– focal	length
o	– camera	origin
p	– principal	point

p Optical	axis

The	3D	point	+ =
-.
-/
-0

is	imaged	into	1 = 2.
2/ as:

2.
2/ =

3 4546
3 4746



Perspective using homogenous coordinates1.3	Perspective	using	homogeneous	coordinates

+ =
-.
-/
-0

1 = 2.
2/

2.
2/ =

3 4546
3 4746

M
2.
2/
1

=
3 0 0 0
0 3 0 0
0 0 1 0

-.
-/
-0
1

→ 	
M2. = 3-.
M2/ = 3-/
M = -0

→
2. = 3 -.-0
2/ = 3 -/-0
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-0
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2. = 3 -.-0
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1.3	Perspective	using	homogeneous	coordinates

+ =
-.
-/
-0

1 = 2.
2/

2.
2/ =

3 4546
3 4746

M
2.
2/
1

=
3 0 0 0
0 3 0 0
0 0 1 0

-.
-/
-0
1

→ 	
M2. = 3-.
M2/ = 3-/
M = -0

→
2. = 3 -.-0
2/ = 3 -/-0

	



Perspective using homogenous coordinates
Perspective	using	homogeneous	coordinates

M
2.
2/
1

=
3 0 0 0
0 3 0 0
0 0 1 0

-.
-/
-0
1

Image	Point Projection	Matrix World	Point



Wait! Our setup has several assumptions

• Camera at world origin 

• Camera aligned with world 
coordinates 

• Ideal pinhole camera

Pinhole	Camera

1 = 2.
2/

o

+ =
-.
-/
-0f

image	plane

f	– focal	length
o	– camera	origin
p	– principal	point

p Optical	axis

The	3D	point	+ =
-.
-/
-0

is	imaged	into	1 = 2.
2/ as:

2.
2/ =

3 4546
3 4746



Removing the initial assumptions

• It is useful to split the overall projection matrix into three parts: 
• A part that depends on the internals of the camera (intrinsic) 
• A vanilla projection matrix 
• An Euclidean transformation between the world and camera frames (extrinsic) 

• Assume first that the world is aligned with camera coordinates  
-> the extrinsic camera matrix is an identity

Perspective	using	homogeneous	coordinates
• It	is	useful	to	split	up	the	overall	projection	matrix	into	three	

parts:
1. a	part	that	depends	on	the	internals	of	the	camera
2. a	vanilla	projection	matrix
3. a	Euclidean	transformation	between	the	world	and	camera	

frames.

• We	first	assume	the	scene	and	world	are	aligned	with	the	
camera	coords,	so	that	the	extrinsic	camera	matrix	is	
identity and	get:

Image	
Point

Camera’s	Intrinsic
Calibration

Projection matrix	
(vanilla)

Camera’s	Extrinsic	
Calibration

World	
Point

M
2
R
1

3 0 0
0 3 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+



More realistic setting - camera pose

• Assume the camera is translated and rotated with respect to the world

The	camera	pose (extrinsic	parameters)

The	camera’s	extrinsic	calibration	is	just	the	rotation
J and	translation > that	take	points	from	the	world	
frame	to	the	camera	frame.

+t
1 = < >

FG 1
+u
1



The camera pose

• The non-ideal camera pose can be taken into account by first 
rotating and translating points from world frame to the camera frame

The	camera	pose (extrinsic	parameters)

The	camera’s	extrinsic	calibration	is	just	the	rotation
J and	translation > that	take	points	from	the	world	
frame	to	the	camera	frame.

+t
1 = < >

FG 1
+u
1

The	camera	pose (extrinsic	parameters)

The	camera’s	extrinsic	calibration	is	just	the	rotation
J and	translation > that	take	points	from	the	world	
frame	to	the	camera	frame.

+t
1 = < >

FG 1
+u
1



The intrinsic parameters

• Transformation to pixel units from metric units  

• Describe the hardware properties of a real camera 
• The image plane might be skewed 
• The pixels might not be square

The	intrinsic calibration	parameters

Describe	hardware	properties of	real	cameras:
– The	image	plane	might	be	skewed.
– The	central	axis	of	the	lens	might	not	line	up	with	the	optical	axis.
– The	light	gathering	elements	might	not	be	square.
– Lens	distortion.	

} =
3 0 0
0 p3 0
0 0 1

1 0 ~�
Ä

0 1 Å�
ÇÄ

0 0 1

1 c 0
0 1 0
0 0 1

=
3 c3 or
0 p3 qr
0 0 1

different	scaling
on	x	and	y

p is	the	aspect	
ratio.

Origin	offset,	
(or, qr) is	the	
principal	point.

s	accounts	for	
skew



Summary of steps from scene to image

• Move the scene point (Xw,1)T into camera coordinate system by  
4x4 (extrinsic) Euclidean transformation:  
 

• Project into ideal camera via the vanilla perspective transformation  

• Map the ideal image into the real image using intrinsic matrix

Summary	of	steps	from	Scene	to	Image

1. Move	scene	point	 +u, 1 G into	camera	coordinate	by	4×4
extrinsic	Euclidean	transformation:

+{
1 = < >

FG 1
+u
1

2. Project	into	ideal	camera	via	a	vanilla	perspective	
transformation:

1′
1 = É|F +{

1

3. Map	the	ideal	image	into	the	real	image	using	intrinsic	
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Beyond pinholes: Radial distortion

• Common in wide-angle lenses 

• Creates non-linear terms in projection 

• Usually handled by solving non-linear  
terms and then correcting the image

Original

Corrected



Things to remember

• Pinhole camera model 
  

• Homogenous coordinates  
 

• Camera projection matrix [ ]XtRKx =



The end


