## Computer Vision

CS-E4850, 5 study credits
Juho Kannala
Aalto University

## Plan for today

- Background
- What is computer vision?
- Why to study computer vision?
- Overview of the course
- Lecture 1: Image formation


## Course personnel

- Lecturer:

Juho Kannala
juho.kannala@aalto.fi

- Main course assistant:

Xiaotian Li
firstname.lastname@aalto.fi

## A few words about me

Juho Kannala
Assistant Professor of Computer vision

- PhD, University of Oulu 2010
- Professor at Aalto since 2016

- Working with computer vision since 2000
- Recent projects and other info available on my homepage: https://users.aalto.fi/ ~kannalj1/

Motivation - what is computer vision?

## Make computers understand images

- What kind of scene?
-Where are the cars?
- How far are the buildings?
-Where are the cars going?
- 

. . . .


## Many data modalities

- 2D or 3D still images
- Video frames
- X-ray
- Ultra-sound
- Microscope



## What kind of information can be extracted?



Semantic information


Geometric information

## What do we have here?



## Wrong! Very hard big data problem...

- Hardware perspective:
- RGB stereo images with 30 frames per second -> 100s MB/s data stream.
- Non-trivial processing per each byte.
- Massive image collections.
- Mathematical perspective
- Information is highly implicit or lost by perspective projection
- 2D -> 3D mapping is ill-posed and ill-conditioned -> need to use constraints


## Wrong! Very hard big data problem...

- Artificial intelligence perspective
- Images have uneven information content
- Computational visual semantics is hard (what does visual stuff mean exactly?)
- If we have limited time, what is the important visual stuff right now?

Still a massive challenge - if we want genuine autonomy.

Natural vision

- Humans see effortlessly


## Natural vision

- Humans see effortlessly, but... it is very hard work for our brains!
- There are billions of neurons in human brain
- Years of evolution generated hardwired priors


## So why bother?

What are the advantages?

## Why computer vision matters?

- Engineering point of view - Computer Vision helps to solve many practical problems: business potential
- Scientific point of view - Human kind of visual system is one of the grand challenges of Artificial Intelligence (AI)
- Al itself is a grand challenge of computing


## Why computer vision matters?

- Safety
- Health
- Security
- Fun
- Access
- 



## Computer vision is already here

- You are surrounded by devices using computer vision
- Imagine what can be done with already installed cameras!


Motivation - Success stories

## Recognizing "simple" patterns



4YCHL28
4YCH428
4YCH428


## Face recognition



The Smile Shutter flow
Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot ${ }^{\text {© }}$ camera can automatically trip the shutter at just the right instant to catch the perfect expression.


## Object detection and recognition



## Reconstruction: 3D from photo collections

Colosseum, Rome, Italy
San Marco Square, Venice, Italy


The Visual Turing test for Scene Reconstruction, Shan, Adams, Curless, Furukawa, Seitz, in 3DV 2013. YouTube video.

## A recent commercial 3D reconstruction system

## Acute3D <br> Technology preview <br> Aerial and street-level imagery fusion

## Robotics



NASA's Mars Rover
See "Computer Vision on Mars"



Robocup
See www.robocup.org

STAIRS at Stanford
Saxena et al. 2008

## Self-driving cars (Nvidia @ CES 2016)



## Visual odometry and SLAM

## Augmented Reality (AR) and Virtual Reality (VR)

## Image generation

Source A: gender, age, hair length, glasses, pose


Source B: everything else

## Current state of the affairs

- Many of the previous examples are less than 5 years old!
- Many new applications to appear in the next 5 years
- Strong open source culture
- Many recent state-of-the-art methods are freely available
- See papers from top conferences like CVPR, ECCV, ICCV, and NeurIPS


## Rapidly growing area



Attendees and submissions to IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

## Rapidly growing area

|  | Publication | h5-index | h5-median |
| :---: | :---: | :---: | :---: |
| 1. | Nature | 362 | 542 |
| 2. | The New England Journal of Medicine | 358 | 602 |
| 3. | Science | 345 | 497 |
| 4. | The Lancet | $\underline{278}$ | 417 |
| 5. | Chemical Society reviews | $\underline{256}$ | 366 |
| 6. | Cell | $\underline{244}$ | 366 |
| 7. | Nature Communications | $\underline{240}$ | 318 |
| 8. | Chemical Reviews | 239 | 373 |
| 9. | Journal of the American Chemical Society | $\underline{236}$ | 309 |
| 10. | Advanced Materials | $\underline{235}$ | 336 |
| 11. | Proceedings of the National Academy of Sciences | $\underline{226}$ | 291 |
| 12. | Angewandte Chemie International Edition | $\underline{213}$ | 295 |
| 13. | JAMA | $\underline{209}$ | 309 |
| 14. | Nucleic Acids Research | $\underline{208}$ | 392 |
| 15. | ACS Nano | 199 | 279 |
| 16. | Physical Review Letters | 197 | 286 |
| 17. | Energy and Environmental Science | 196 | 330 |
| 18. | Journal of Clinical Oncology | 196 | 279 |
| 19. | Nano Letters | 194 | 281 |
| 20. | IEEE Conference on Computer Vision and Pattern Recognition, CVPR | 188 | 302 |

## Rapidly growing area - substantial commercial interest

## amazon Baie̊o

 Platinum Sponsors


 Silver Sponsors


 CVPR 2018 sponsors

## Plenty of job opportunities

- Companies are looking for computer vision and deep learning experts.
- Big Internet players are investing heavily (Apple, Google, Facebook, Microsoft, Baidu, Tencent, ...) as well as car industry (Tesla, BMW,...)
- Strong imaging ecosystem also in Finland


Specifics of this course

## Course textbooks

- Szeliski: Computer Vision
- Full-copy freely available
- Hartley \& Zisserman: Multiple View Geometry in Computer Vision
Lixts in computir scienci
- Available as an e-book via library
- Forsyth \& Ponce: Computer Vision
- Full-copy freely available

Computer Vision
Algorithms and Applications


Richard Szeliski

- Springer



## What will you learn on this course?

- Course content (numbers refer to chapters in Szeliski's book,1st edition):
- Image formation and processing $(2,3)$
- Feature detection and matching (4)
- Feature based alignment and image stitching $(6,9)$
- Optical flow and tracking (8)
- Basics of image classification and convolutional neural networks
- Object recognition and detection (14)
- Structure from motion, stereo and 3D reconstruction (7, 11, 12)


## What will you NOT learn on this course?

- Software packages
- PyTorch, TensorFlow, Keras, Caffe, etc.
- We have simple exercises with Python/Matlab though
- In-depth deep learning
- Tweaking architectures, loss functions, etc.
- Note that there exists a separate deep learning course (CS-E4890)
- All the bells and whistles in the state-of-the-art systems
- We concentrate on the basic concepts (get them right and the rest is easier for you)


## Organization

- Lectures on Mondays at 10-12 (12 lectures)
- Exercises on Fridays at 12-14 (12 sessions)
- The solutions of weekly homework assignments should be returned before the session
- The solutions are presented in the session
- Guidance available if needed
- Slack and teacher's receptions (see MyCourses)
- Virtual presence is not rewarded, only returned homework counts


## Requirements

- Get more than 0 points from at least 8 exercise rounds (i.e. solve at least 1 task from 8 different weekly rounds)
- Pass the exam


## Hints

- Doing homework takes time but is often a good way to learn in depth
- Try to do more than the minimum - homework points are taken into account in the grading (i.e. weighted exercise points are added to exam points)
- Note that the amount of work and bonus points varies a bit between weeks - exercises are published early so that you can do them in advance if needed


## Questions at this point?

## Lecture 1: Camera model

## Relevant reading

- Chapters 2, 3, and 6 in [Hartley \& Zisserman]
- Comprehensive presentation of the core content
- Chapter 2 in [Szeliski]
- Broader overview of the image formation


## This is (a picture of) a cat



## Cat lives in a 3D world



The point $\mathbf{X}$ in world space projects to the point $\mathbf{x}$ in image space.

## Going from $X$ in $3 D$ to $x$ in 2D

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \stackrel{?}{ } \mathbf{x}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

film/sensor
cat


The output would be blurry if film just exposed to the cat.

## Pinhole camera




All rays passing through a single point (center of projection)

## Pinhole camera

image plane


## Pinhole camera



## What happens in the projection?

- Projection from 3D to 2D -> information is lost
- What properties are preserved?
- Straight lines
- Incidence
- What properties are not preserved?
- Angles
- Lengths


## Projective geometry - what is lost?



## Length is not preserved



## Angles are not preserved



## Straight lines are still straight



## Vanishing points and lines

- Parallel lines in the world intersect at a "vanishing point"



## Constructing the vanishing point of a line



## Vanishing points and lines



All parallel lines will have the same vanishing point.

## Homogenous coordinates

- The projection $x=f X / x_{3}$ is non linear!
- Can be made linear using homogenous coordinates
- Homogenous coordinates allow for transforms to be concatenated easily



## Homogenous coordinates

Conversion to homogenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Conversion from homogenous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

## Invariance to scaling

$$
k\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{l}
k x \\
k y \\
k w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\frac{k x}{k w} \\
\frac{k y}{k w}
\end{array}\right]=\left[\begin{array}{l}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right]
$$

E.g. $[1,2,3]$ is the same as $[3,6,9]$ and both represent the same inhomogeneous point [0.33,0.66].

## Basic geometry in homogenous coordinates

- Line equation: $a x+b y+c=0$
- A pixel p in homogenous coordinates:
- Line is given by cross product of two points

$$
\begin{gathered}
\text { line }_{i}=\left[\begin{array}{c}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right] \\
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \\
\text { line }_{i j}=p_{i} \times p_{j} \\
q_{i j}=\text { line }_{i} \times \text { line }_{j}
\end{gathered}
$$

## 3D Euclidean transformation

- Cat moves through 3D space
- The movement of the nose can be described using an Euclidean Transform



## Building the 3D rotation matrix $R$

- R can be build from various representations (Euler ang., quaternion)
- Euler angles represent the rotation using three parameters, one for each axis

$$
\begin{gathered}
X^{\prime}=R_{z} X^{W}=\left[\begin{array}{ccc}
\cos \theta_{z} & \sin \theta_{z} & 0 \\
-\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right] X^{w} \\
X^{\prime \prime}=R_{y} X^{\prime}=\left[\begin{array}{ccc}
\cos \theta_{y} & 0 & -\sin \theta_{y} \\
0 & 1 & 0 \\
\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right] X^{\prime} \\
X^{A}=R_{x} X^{\prime \prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & \pm \sin \theta_{x} \\
0 & \mp \sin \theta_{x} & \cos \theta_{x}
\end{array}\right] X^{\prime \prime} \\
\boldsymbol{R}^{C W}=\boldsymbol{R}_{x} \boldsymbol{R}_{y} \boldsymbol{R}_{z}
\end{gathered}
$$



Order matters!

## 3D Euclidean transformation

- Concatenation of successive transforms is a mess!

$$
\begin{aligned}
\mathbf{X}_{1} & =\boldsymbol{R}_{1} \mathbf{X}+\mathbf{t}_{1} \\
\mathbf{X}_{2} & =\boldsymbol{R}_{2} \mathbf{X}_{1}+\mathbf{t}_{2} \\
& =\boldsymbol{R}_{2}\left(\boldsymbol{R}_{1} \mathbf{X}+\mathbf{t}_{1}\right)+\mathbf{t}_{2}=\left(\boldsymbol{R}_{2} \boldsymbol{R}_{1}\right) \mathbf{X}+\left(\boldsymbol{R}_{2} \mathbf{t}_{\mathbf{1}}+\mathbf{t}_{2}\right)
\end{aligned}
$$

## Homogenous coordinates save the day!

- Replace 3D points $\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$ with homogenous versions $\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$
- The Euclidean transform becomes

$$
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\boldsymbol{E}\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

- Transformation can now be concatenated by matrix multiplication

$$
\left[\begin{array}{c}
\mathbf{X}_{1} \\
1
\end{array}\right]=\boldsymbol{E}_{10}\left[\begin{array}{c}
\mathbf{X}_{0} \\
1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}_{2} \\
1
\end{array}\right]=\boldsymbol{E}_{21}\left[\begin{array}{c}
\mathbf{X}_{1} \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathbf{X}_{2} \\
1
\end{array}\right]=\boldsymbol{E}_{21} \boldsymbol{E}_{10}\left[\begin{array}{c}
\mathbf{X}_{\mathbf{0}} \\
1
\end{array}\right]
$$

## More 3D-3D and 2D-2D transformations

Projective (15 dof):

$$
\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime} \\
X_{4}^{\prime}
\end{array}\right]=\left[\boldsymbol{P}_{4 \times 4}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]
$$

Affine (12 dof):

$$
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{A}_{3 \times 3} & \mathbf{t}_{3} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]
$$

Similarity (7 dof):

$$
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
S \boldsymbol{R}_{3 \times 3} & \mathbf{t}_{3} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

Euclidean (6 dof):

$$
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R}_{3 \times 3} & \mathbf{t}_{3} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]
$$

Projective (aka Homography, 8 dof):

$$
\left[\begin{array}{l}
x^{\prime}{ }_{1} \\
x^{\prime}{ }_{2} \\
x^{\prime}{ }_{3}
\end{array}\right]=\left[H_{3 \times 3}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Affine ( 6 dof):

$$
\left[\begin{array}{c}
\mathbf{x}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{A}_{\mathbf{2 \times 2}} & \mathbf{t}_{2} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
$$

Similarity ( 4 dof):

$$
\left[\begin{array}{c}
\mathbf{x}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
S \boldsymbol{R}_{2 \times 2} & \mathbf{t}_{2} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
$$

Euclidean (3 dof):

$$
\left[\begin{array}{c}
\mathbf{x}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R}_{2 \times 2} & \mathbf{t}_{\mathbf{2}} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
$$

## Examples of 2D-2D transforms



## Perspective transformation (3D-2D)



## Perspective using homogenous coordinates



## Perspective using homogenous coordinates



## Wait! Our setup has several assumptions

- Camera at world origin
- Camera aligned with world coordinates
- Ideal pinhole camera



## Removing the initial assumptions

- It is useful to split the overall projection matrix into three parts:
- A part that depends on the internals of the camera (intrinsic)
- A vanilla projection matrix
- An Euclidean transformation between the world and camera frames (extrinsic)
- Assume first that the world is aligned with camera coordinates
-> the extrinsic camera matrix is an identity

| Image <br> Point | Camera's Intrinsic <br> Calibration | Projection matrix <br> (vanilla) | Camera's Extrinsic <br> Calibration | World <br> Point |
| :---: | :---: | :---: | :---: | :---: |
| $\lambda\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ | $\left[\begin{array}{lll}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right]$ | $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ |  |  |\(\quad\left[\begin{array}{llll}1 \& 0 \& 0 \& 0 <br>

0 \& 1 \& 0 \& 0 <br>
0 \& 0 \& 1 \& 0 <br>
0 \& 0 \& 0 \& 1\end{array}\right] \quad \mathbf{X}\)

## More realistic setting - camera pose

- Assume the camera is translated and rotated with respect to the world



## The camera pose

- The non-ideal camera pose can be taken into account by first rotating and translating points from world frame to the camera frame

$$
\left[\begin{array}{c}
\mathbf{X}^{\mathrm{c}} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}^{W} \\
1
\end{array}\right]
$$



## The intrinsic parameters

- Transformation to pixel units from metric units
- Describe the hardware properties of a real camera
- The image plane might be skewed
- The pixels might not be square

$$
K=\underbrace{\begin{array}{c}
\text { Origin offset, } \\
\left(u_{o}, v_{o}\right) \text { is the } \\
\text { principal point. }
\end{array}}_{\substack{\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & \gamma f & 0 \\
0 & 0 & 1
\end{array}\right] \\
\text { different scaling } \\
\text { on xand } y \\
\gamma \text { is the aspect } \\
\text { ratio. }}} \begin{array}{c}
\text { s accounts for } \\
\text { skew }
\end{array}]\left[\begin{array}{ccc}
1 & 0 & \frac{u_{0}}{f} \\
0 & 1 & \frac{v_{0}}{\gamma f} \\
0 & 0 & 1
\end{array}\right]\left|\left[\begin{array}{ccc}
1 & s & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right|\left[\begin{array}{ccc}
f & s f & u_{0} \\
0 & \gamma f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

## Summary of steps from scene to image

- Move the scene point ( $\left.\mathrm{X}^{\mathrm{w}}, 1\right)^{\mathrm{T}}$ into camera coordinate system by $4 \times 4$ (extrinsic) Euclidean transformation:

$$
\left[\begin{array}{c}
\mathbf{X}^{C} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}^{W} \\
1
\end{array}\right]
$$

- Project into ideal camera via the vanilla perspective transformation

$$
\left[\begin{array}{c}
\mathbf{x}^{\prime} \\
1
\end{array}\right]=[\mathbf{I} \mid \mathbf{0}]\left[\begin{array}{c}
\mathbf{X}^{C} \\
1
\end{array}\right]
$$

- Map the ideal image into the real image using intrinsic matrix

$$
\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]=\boldsymbol{K}\left[\begin{array}{c}
\mathbf{x}^{\prime} \\
1
\end{array}\right]
$$

## Camera projection matrix $P$

| Image <br> Point | Camera's <br> Intrinsic <br> Calibration | Projection matrix <br> (vanilla) | Camera's Extrinsic <br> Calibration | World <br> Point |
| :---: | :---: | :---: | :---: | :---: |
| $\lambda\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ | $\left[\begin{array}{ccc}f & s f & u_{0} \\ 0 & \gamma f & v_{0} \\ 0 & 0 & 1\end{array}\right]$ | $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \quad\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \\ 0 & 0 & 0 & 1\end{array}\right]$ | $\mathbf{X}$ |  |

$\mathbf{P}_{3 \times 4}=\boldsymbol{K}[\boldsymbol{R} \mid \mathbf{t}]$

## Beyond pinholes: Radial distortion

- Common in wide-angle lenses
- Creates non-linear terms in projection
- Usually handled by solving non-linear terms and then correcting the image




## Things to remember

- Pinhole camera model

- Homogenous coordinates
- Camera projection matrix

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

The end

