
Computer Vision!
CS-E4850, 5 study credits!
!
Juho Kannala!
Aalto University !

Lecture 2: Image Processing!

•  Lecture concentrates on image filtering!

•  Relevant reading: Chapter 3 of Szeliski’s book!

!
!
!
!
Acknowledgement: many slides from James Hays, Derek Hoiem, Svetlana Lazebnik, Esa Rahtu, Steve Seitz, David Lowe,
Kristen Grauman, Alexei Efros, and others.!

!

!

Three views of filtering!

•  Image filters in spatial domain!
–  Filter is a mathematical operation of a grid of numbers!
–  Smoothing, sharpening, edge detection!

•  Image filters in the frequency domain!
–  Filtering is a way to modify the frequencies of images!
–  Hybrid images, sampling, image resizing!

•  Templates and image pyramids!
–  Filtering is a way to match a template to the image!
–  Detection, coarse-to-fine registration!

Source: J. Hays

Image filtering!

•  Image filtering: compute function of local neighborhood at each position !

•  Really important in practice!!

•  Enhance images (Denoise, resize, increase contrast, etc.)!

•  Extract information from images (Texture, edges, distinctive points, etc.)!

•  Detect patterns (Template matching)!

•  Deep Convolutional Networks (Sequence of filters and non-linear functions)!

Motivation: Image denoising!

•  How can we reduce noise in a photograph?!

Source: Lazebnik

Moving average!

•  Let’s replace each pixel with a weighted average of its neighborhood!

•  The weights are called the filter kernel!

•  The weights for the average of a 3x3 neighborhood:!

1 1 1

1 1 1

1 1 1

“box filter”
Source: D. Lowe

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=∑

[.,.]h[.,.]f 1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Image filtering!

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

?

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

?

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Image filtering!

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Image filtering!

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

],[],[],[
,

lnkmflkgnmh
lk

++=∑

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Credit: S. Seitz

1 1 1

1 1 1

1 1 1

],[g ⋅⋅

Box filter - what does it do?!

•  Replaces each pixel with an average of its
neighborhood!

•  Achieves smoothing effect!
(removes sharp features)!

Source: D. Lowe

Smoothing with box filter!

Practice with linear filters!

0 0 0

0 1 0

0 0 0

Original

?

Source: D. Lowe

Practice with linear filters!

0 0 0

0 1 0

0 0 0

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters!

0 0 0

1 0 0

0 0 0

Original

?

Source: D. Lowe

Practice with linear filters!

0 0 0

1 0 0

0 0 0

Original Shifted left
By 1 pixel

Source: D. Lowe

Practice with linear filters!

Original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 - ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters!

Original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 -

Sharpening filter
-  Accentuates differences with local
average

Source: D. Lowe

Sharpening!

Source: D. Lowe

Other filters!

-1 0 1

-2 0 2

-1 0 1

Vertical Edge
(absolute value)

Sobel

Other filters!

-1 -2 -1

0 0 0

1 2 1

Horizontal Edge
(absolute value)

Sobel

Key properties!

•  Linearity: !

filter(f1 + f2) = filter(f1) + filter(f2) !

•  Shift invariance: !

filter(shift(f)) = shift(filter(f))
-> same behavior regardless of pixel location!

•  Theoretical result: any linear shift-invariant operator can be represented as a convolution!

Source: S. Lazebnik

Properties in more detail!

•  Commutative: a * b = b * a!
•  Conceptually no difference between filter and signal!

•  Associative: a * (b * c) = (a * b) * c!
•  Often apply several filters one after another: (((a * b1) * b2) * b3)!
•  This is equivalent to applying one filter: a * (b1 * b2 * b3)!

•  Distributes over addition: a * (b + c) = (a * b) + (a * c)!

•  Scalars factor out: ka * b = a * kb = k (a * b)!

•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],!
a * e = a!
!

Source: S. Lazebnik

Filtering vs. Convolution!

•  2D filtering:!
!
h=filter2(f,I); or h=imfilter(I,f);

!

•  2D convolution:!
!
h=conv2(f,I);

],[],[],[
,

lnkmIlkfnmh
lk

−−=∑

I=image f=filter

],[],[],[
,

lnkmIlkfnmh
lk

++=∑

Definition of convolution!

•  Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g!

•  See MATLAB functions: conv2, filter2, imfilter (the latter two don’t flip the kernel) !

∑ −−=∗
lk

lkglnkmfnmgf
,

],[],[],)[(

f

Source: F. Durand

Convention:!
kernel is “flipped”!

Important filter - Gaussian!

•  Spatially-weighted average!

!
!

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Credit: C. Rasmussen

Smoothing with Gaussian filter!

Smoothing with box filter!

Gaussian filters!

•  Remove “high-frequency” components from the image (low-pass filter)!
–  Images become more smooth!

•  Convolution with self is another Gaussian!
•  So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have!
•  Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width 𝜎√2 !

•  Separable kernel!
•  Factors into product of two 1D Gaussians!

Source: K. Grauman

Separability of the Gaussian filter!

Separability example!

*

*

=

=

2D filtering
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform filtering
along rows:

Followed by filtering
along the remaining column:

Separability!

•  Why is separability useful in practice?!

Separability!

•  Why is separability useful in practice?!

•  Filter of size k*k requires k2 operations per pixel!

•  Only 2k operations for separable kernels: !

Practical matters – what happens near the edge?!

•  The filter window falls off the edge of the image!

•  Need to extrapolate:!
•  clip filter (black)!

Matlab: imfilter(f, g, 0)!
•  wrap around!

Matlab: imfilter(f, g, ‘circular’)!
•  copy edge !

Matlab: imfilter(f, g, ‘replicate’)!
•  reflect across edge!

Matlab: imfilter(f, g, ‘symmetric’)!
Source: S. Marschner

Practical matters!

•  What is the size of the output?!

•  Matlab: filter2(g, f, shape)!
• shape = ‘full’: output size is sum of sizes of f and g!
• shape = ‘same’: output size is same as f!
• shape = ‘valid’: output size is difference of sizes of f and g !

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

Source: S. Lazebnik

Why Gaussian gives smooth output compared to box filter?!

Gaussian Box filter

Source: D. Hoiem

Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem

Thinking in terms of frequency!

Jean Baptiste Joseph Fourier (1768-1830)!

•  He had a crazy idea in 1807:!

Any univariate function can be rewritten !
as a weighted sum of sines and cosines !
of different frequencies. !

•  Don’t believe it? !
•  Neither did lagrange, Laplace, Poisson and other big wigs!
•  Not translated into English until 1878!!

•  But it’s (mostly) true!!
•  Called Fourier Series!
•  There are some subtle restrictions!

...the	manner	in	which	the	author	arrives	at	these	
equations	is	not	exempt	of	difficulties	and...his	

analysis	to	integrate	them	still	leaves	something	to	be	
desired	on	the	score	of	generality	and	even	rigour.	

	

Laplace

Lagrange
Legendre

Slides: Efros

A sum of sines!

•  Our building block:!
!

•  Add enough of them to get any signal
f(x) you want!!

)+φωxAsin(

A sum of sines!

•  Example:!
g(t) = sin(2πf t) + (1/3)sin(2π(3f) t) !

= +

Example: Music!

•  We think of music in terms of frequencies at different magnitudes!

Source: D. Hoiem

2D signals!

•  We can also think of all kinds of other signals the same way!

Source: D. Hoiem

Other signals!

•  We can also think of all kinds of other signals the same way!

Source: D. Hoiem

Fourier analysis in images!

•  In 2D case we have two-dimensional frequency !
(which encodes also the 2D orientation of the sine wave)!

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering Slide adapted from D. Hoiem

Signals can be composed!

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html Source: D. Hoiem

Fourier Bases!

This change of basis is the Fourier Transform!

Log Magnitude

Strong Vertical Frequency
(Sharp Horizontal Edge)

Strong Horz.
Frequency
(Sharp Vert.
Edge)

Diagonal Frequencies

Low Frequencies

Source: Hays, Hoiem

Fourier Transform!

•  Fourier transform stores the magnitude and phase at each frequency!
•  Magnitude encodes how much signal there is at a particular frequency!
•  Phase encodes spatial information (indirectly)!
•  For mathematical convenience, this is often notated in terms of real and complex numbers!

22)()(ωω IRA +±=
)(
)(tan 1

ω
ω

φ
R
I−=Amplitude:

Euler’s formula:

Phase:

Source: D. Hoiem

Computing 2D-DFT!

DFT

IDFT

•  Discrete, 2-D Fourier & inverse Fourier transforms are implemented
in fft2 and ifft2, respectively

•  fftshift: Move origin (DC component) to image center for display
•  Example:

>> I = imread(‘test.png’); % Load grayscale image
>> F = fftshift(fft2(I)); % Shifted transform
>> imshow(log(abs(F)),[]); % Show log magnitude
>> imshow(angle(F),[]); % Show phase angle

Source: L. Xie

The Convolution Theorem!

•  The Fourier transform of the convolution of two functions is the product of their Fourier
transforms!

•  The inverse Fourier transform of the product of two Fourier transforms is the convolution of the
two inverse Fourier transforms!
!
!
!
!

•  Convolution in spatial domain is equivalent to multiplication in frequency domain!!

]F[]F[]F[hghg =∗

][F][F][F 111 hggh −−− ∗=

Source: D. Hoiem

Properties of Fourier Transforms!

•  Linearity!

•  Fourier transform of a real signal is symmetric about the origin!

•  The energy of the signal is the same as the energy of its Fourier transform!

See Szeliski Book (3.4)

Questions!

•  Which has more information, the phase or the magnitude?!

•  What happens if you take the phase from one image and combine it with the magnitude from
another image?!

Example: amplitude vs. phase !

A = “Aron” P = “Phyllis”

log(abs(FA)) log(abs(FP))

angle(FA) angle(FP)

ifft2(abs(FA), angle(FP))

FA = fft2(A) FP = fft2(P)

ifft2(abs(FP), angle(FA))

Source: L. Xie

What this all has to do with filtering?!

Filtering in spatial domain!

-1 0 1
-2 0 2
-1 0 1

* =

Source: D. Hoiem

Filtering in frequency domain!

FFT FFT

Inverse FFT
=

Source: D. Hoiem

Why Gaussian gives smooth output compared to box filter?!

Gaussian Box filter

Source: D. Hoiem

Gaussian filter!

Box filter!

Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem

Subsampling by a factor of two!

Throw away every other row and column to create a ½ size image

Problem: Aliasing !

•  One-dimensional example (sinewave):!
!
!

Problem: Aliasing !

•  One-dimensional example (sinewave):!
!
!

Aliasing in graphics !

!

•  Characteristic errors may appear ”checker board disintegrate”, “striped shirts look funny”,….!

Nyquist-Shannon sampling theorem !

•  When sampling a signal at discrete intervals, the sampling frequency must be ≥ 2 × fmax!

•  This allows to reconstruct the original perfectly from the sampled version!

good

bad

Solution: Anti-aliasing!

•  Option 1: Sample more often!

•  Option 2: Get rid of frequencies greater than half the new sampling frequency (i.e. filter)!
-> Loss of information, but still better than aliasing!

•  Example algorithm for downsampling by factor 2 (Matlab):!

1.  Apply low-pass filter!
im_blur = imfilter(image,fspecial(‘gaussian’,7,1));!

2.  Sample every other pixel !
im_small = im_blur(1:2:end , 1:2:end);!

!

Subsampling without pre-filtering!

1/4 (2x zoom) 1/8 (4x zoom) 1/2

Credit: S. Seitz

Subsampling with pre-filtering!

G 1/4 G 1/8 Gaussian 1/2

Credit: S. Seitz

Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem

Hybrid Images!

A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006!
Source: D. Hoiem

Why do we get distance-dependent interpretation of a hybrid image?!

?

Adapted from a slide by D. Hoiem

Clues from Human Perception!

•  Early processing in humans filters for various orientations and scales of frequency!

•  Perceptual cues in the mid-high frequencies dominate perception!

•  When we see an image from far away, we are effectively subsampling it (and low pass filtering)!

Early Visual Processing: Multi-scale edge and blob filters

Source: D. Hoiem

Hybrid Image in FFT!

Hybrid Image Low-passed Image High-passed Image

Source: D. Hoiem

Thus, we get distance-dependent interpretation of a hybrid image!

?

Adapted from a slide by D. Hoiem

Template matching using filtering!

Template matching!

•  Goal: find in image!

•  Approach: Filter image using the template!

•  What is a good filter function (i.e. similarity
measure) between two patches?!

Source: D. Hoiem

Matching with filters!

•  Goal: find in image!

•  Method 1: filter the image with eye patch!
!

Input! Filtered Image!

],[],[],[
,

lnkmflkgnmh
lk

++=∑

What went wrong?!

f = image
g = filter

Source: D. Hoiem

Matching with filters!

•  Goal: find in image!

•  Method 2: filter with zero-mean eye!
!

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfglkgnmh
lk

++−=∑

True detections

False
detections

mean of template g

Matching with filters!

•  Goal: find in image!

•  Method 3: Normalized cross-correlation!

!
!

Matlab: normxcorr2(template, im)

mean image patch mean template

5.0

,

2
,

,

2

,
,

)],[()],[(

)],[)(],[(
],[

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−

−++−

=

∑ ∑

∑

lk
nm

lk

nm
lk

flnkmfglkg

flnkmfglkg
nmh

Source: D. Hoiem

Matching with filters!

•  Goal: find in image!

•  Method 3: Normalized cross-correlation!

!
!

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters!

•  Goal: find in image!

•  Method 3: Normalized cross-correlation!

!
!

Input Normalized X-Correlation Thresholded Image

True detections

Q: What is the best method to use?!

!

A: Depends!

•  Zero-mean filter: fast but not a great matcher!

•  Normalized cross-correlation: slow but invariant to local average intensity and contrast!

Source: D. Hoiem

Q: What if we want to find larger or smaller eyes?!

A: Image pyramids: multiresolution image representations!

•  Repeated decimation with a Gaussian low-pass filter gives Gaussian pyramid!

Template Matching with Image Pyramids!

Input: Image, Template!

1.  Match template at current scale!

2.  Downsample image!
•  In practice, scale step of 1.1 to 1.2!

3.  Repeat 1-2 until image is very small!

4.  Take responses above some threshold, perhaps with non-maxima suppression!

Source: D. Hoiem

Low-Pass	
Filtered	Image	Image	

Gaussian
Filter Sample Low-Res	

Image	

Laplacian pyramid!

•  Contains the difference images between two successive Gaussian pyramid
levels:!

Showing, at full resolution, the information captured at each level of a Gaussian (top) and
Laplacian (bottom) pyramid.!

Major uses of image pyramids!

•  Compression!

•  Object detection!
•  Scale search!
•  Features!

•  Detecting stable interest points !

•  Registration!
•  Coarse-to-fine!

Source: D. Hoiem

Things to Remember!

•  Image filtering: compute function of local neighborhood at each position!
 !

•  Sometimes it makes sense to think of images and filtering in the frequency domain!
!

•  Can be faster to filter using FFT for large images (N logN vs. N2 for auto-correlation)!
!

•  Template matching: localize given template in image!
!

•  Image pyramid: multiresolution representation of image!
(Remember to low pass filter before sub-sampling)!

