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Lecture 2: Image Processing!

•  Lecture concentrates on image filtering!

•  Relevant reading: Chapter 3 of Szeliski’s book!

!
!
!
!
Acknowledgement: many slides from James Hays, Derek Hoiem, Svetlana Lazebnik, Esa Rahtu, Steve Seitz, David Lowe, 
Kristen Grauman, Alexei Efros, and others.!

!

!



Three views of filtering!

•  Image filters in spatial domain!
–  Filter is a mathematical operation of a grid of numbers!
–  Smoothing, sharpening, edge detection!

•  Image filters in the frequency domain!
–  Filtering is a way to modify the frequencies of images!
–  Hybrid images, sampling, image resizing!

•  Templates and image pyramids!
–  Filtering is a way to match a template to the image!
–  Detection, coarse-to-fine registration!

Source: J. Hays 



Image filtering!

•  Image filtering: compute function of local neighborhood at each position !

•  Really important in practice!!

•  Enhance images (Denoise, resize, increase contrast, etc.)!

•  Extract information from images (Texture, edges, distinctive points, etc.)!

•  Detect patterns (Template matching)!

•  Deep Convolutional Networks (Sequence of filters and non-linear functions)!



Motivation: Image denoising!

•  How can we reduce noise in a photograph?!

Source: Lazebnik 



Moving average!

•  Let’s replace each pixel with a weighted average of its neighborhood!

•  The weights are called the filter kernel!

•  The weights for the average of a 3x3 neighborhood:!
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Image filtering!
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Image filtering!
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Box filter  - what does it do?!

•  Replaces each pixel with an average of its 
neighborhood!

•  Achieves smoothing effect!
(removes sharp features)!

Source: D. Lowe 



Smoothing with box filter!



Practice with linear filters!
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Source: D. Lowe 



Practice with linear filters!

0 0 0 

0 1 0 
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Original Filtered 
(no change)

Source: D. Lowe 



Practice with linear filters!

0 0 0 
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Original

?

Source: D. Lowe 



Practice with linear filters!

0 0 0 
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Original Shifted left
By 1 pixel

Source: D. Lowe 



Practice with linear filters!

Original

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 - ?

(Note that filter sums to 1)

Source: D. Lowe 



Practice with linear filters!

Original

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 -

Sharpening filter 
-  Accentuates differences with local 
average 

Source: D. Lowe 



Sharpening!

Source: D. Lowe 



Other filters!
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Vertical Edge 
(absolute value) 

Sobel 



Other filters!

-1 -2 -1 

0 0 0 

1 2 1 

Horizontal Edge 
(absolute value) 

Sobel 



Key properties!

•  Linearity: !

filter(f1 + f2) = filter(f1) + filter(f2) !

•  Shift invariance:  !

filter(shift(f)) = shift(filter(f)) 
-> same behavior regardless of pixel location!

•  Theoretical result: any linear shift-invariant operator can be represented as a convolution!

Source: S. Lazebnik 



Properties in more detail!

•  Commutative: a * b = b * a!
•  Conceptually no difference between filter and signal!

•  Associative: a * (b * c) = (a * b) * c!
•  Often apply several filters one after another: (((a * b1) * b2) * b3)!
•  This is equivalent to applying one filter: a * (b1 * b2 * b3)!

•  Distributes over addition: a * (b + c) = (a * b) + (a * c)!

•  Scalars factor out: ka * b = a * kb = k (a * b)!

•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],!
a * e = a!
!

Source: S. Lazebnik 



Filtering vs. Convolution!

•  2D filtering:!
!
h=filter2(f,I); or  h=imfilter(I,f);

!

•  2D convolution:!
!
h=conv2(f,I);
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Definition of convolution!

•  Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g!

•  See MATLAB functions: conv2, filter2, imfilter (the latter two don’t flip the kernel) !
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Source: F. Durand 

Convention:!
kernel is “flipped”!



Important filter - Gaussian!

•  Spatially-weighted average!

!
!
 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003 

5 x 5, σ = 1 

Credit: C. Rasmussen 



Smoothing with Gaussian filter!



Smoothing with box filter!



Gaussian filters!

•  Remove “high-frequency” components from the image (low-pass filter)!
–  Images become more smooth!

•  Convolution with self is another Gaussian!
•  So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have!
•  Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width  𝜎√2 !

•  Separable kernel!
•  Factors into product of two 1D Gaussians!

Source: K. Grauman 



Separability of the Gaussian filter!



Separability example!

* 

* 

= 

= 

2D filtering 
(center location only) 

Source: K. Grauman 

The filter factors 
into a product of 1D 

filters: 

Perform filtering 
along rows: 

Followed by filtering 
along the remaining column: 



Separability!

•  Why is separability useful in practice?!



Separability!

•  Why is separability useful in practice?!

•  Filter of size k*k requires k2 operations per pixel!

•  Only 2k operations for separable kernels: !



Practical matters – what happens near the edge?!

•  The filter window falls off the edge of the image!

•  Need to extrapolate:!
•  clip filter (black)!

Matlab: imfilter(f, g, 0)!
•  wrap around!

Matlab: imfilter(f, g, ‘circular’)!
•  copy edge !

Matlab: imfilter(f, g, ‘replicate’)!
•  reflect across edge!

Matlab: imfilter(f, g, ‘symmetric’)!
Source: S. Marschner 



Practical matters!

•  What is the size of the output?!

•  Matlab: filter2(g, f, shape)!
• shape = ‘full’: output size is sum of sizes of f and g!
• shape = ‘same’: output size is same as f!
• shape = ‘valid’: output size is difference of sizes of f and g !

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 

Source: S. Lazebnik 



Why Gaussian gives smooth output compared to box filter?!

Gaussian Box filter 

Source: D. Hoiem 



Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem 



Thinking in terms of frequency!



Jean Baptiste Joseph Fourier (1768-1830)!

•  He had a crazy idea in 1807:!

Any univariate function can be rewritten !
as a weighted sum of sines and cosines !
of different frequencies. !

•  Don’t believe it?  !
•  Neither did lagrange, Laplace, Poisson and other big wigs!
•  Not translated into English until 1878!!

•   But it’s (mostly) true!!
•  Called Fourier Series!
•  There are some subtle restrictions!

...the	manner	in	which	the	author	arrives	at	these	
equations	is	not	exempt	of	difficulties	and...his	

analysis	to	integrate	them	still	leaves	something	to	be	
desired	on	the	score	of	generality	and	even	rigour.	

	

Laplace 

Lagrange 
Legendre 

Slides: Efros 



A sum of sines!

•  Our building block:!
!

•  Add enough of them to get any signal 
f(x) you want!!

)+φωxAsin(



A sum of sines!

•  Example:!
g(t) = sin(2πf t ) + (1/3)sin(2π( 3f ) t) !

=  + 



Example: Music!

•  We think of music in terms of frequencies at different magnitudes!

Source: D. Hoiem 



2D signals!

•  We can also think of all kinds of other signals the same way!

Source: D. Hoiem 



Other signals!

•  We can also think of all kinds of other signals the same way!

Source: D. Hoiem 



Fourier analysis in images!

•  In 2D case we have two-dimensional frequency !
(which encodes also the 2D orientation of the sine wave)!

Intensity Image 

Fourier Image 

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering Slide adapted from D. Hoiem 



Signals can be composed!

+ = 

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering 
More: http://www.cs.unm.edu/~brayer/vision/fourier.html Source: D. Hoiem 



Fourier Bases!

This change of basis is the Fourier Transform!

Log Magnitude 

Strong Vertical Frequency 
(Sharp Horizontal Edge) 

Strong Horz. 
Frequency 
(Sharp Vert. 
Edge) 

Diagonal Frequencies 

Low Frequencies 

Source: Hays, Hoiem 



Fourier Transform!

•  Fourier transform stores the magnitude and phase at each frequency!
•  Magnitude encodes how much signal there is at a particular frequency!
•  Phase encodes spatial information (indirectly)!
•  For mathematical convenience, this is often notated in terms of real and complex numbers!

22 )()( ωω IRA +±=
)(
)(tan 1

ω
ω

φ
R
I−=Amplitude: 

Euler’s formula:  

Phase: 

Source: D. Hoiem 



Computing 2D-DFT!

DFT 

IDFT 

•  Discrete, 2-D Fourier & inverse Fourier transforms are implemented 
in fft2 and ifft2, respectively 

•  fftshift: Move origin (DC component) to image center for display 
•  Example: 

>> I = imread(‘test.png’);  % Load grayscale image 
>> F = fftshift(fft2(I));   % Shifted transform  
>> imshow(log(abs(F)),[]);  % Show log magnitude  
>> imshow(angle(F),[]);     % Show phase angle 

Source: L. Xie 



The Convolution Theorem!

•  The Fourier transform of the convolution of two functions is the product of their Fourier 
transforms!

•  The inverse Fourier transform of the product of two Fourier transforms is the convolution of the 
two inverse Fourier transforms!
!
!
!
!

•  Convolution in spatial domain is equivalent to multiplication in frequency domain!!

]F[]F[]F[ hghg =∗

][F][F][F 111 hggh −−− ∗=

Source: D. Hoiem 



Properties of Fourier Transforms!

•  Linearity!

•  Fourier transform of a real signal is symmetric about the origin!

•  The energy of the signal is the same as the energy of its Fourier transform!

See Szeliski Book (3.4) 



Questions!

•  Which has more information, the phase or the magnitude?!

•  What happens if you take the phase from one image and combine it with the magnitude from 
another image?!



Example: amplitude vs. phase !

A = “Aron” P = “Phyllis” 

log(abs(FA)) log(abs(FP)) 

angle(FA) angle(FP) 

ifft2(abs(FA), angle(FP)) 

FA = fft2(A) FP = fft2(P) 

ifft2(abs(FP), angle(FA)) 

Source: L. Xie 



What this all has to do with filtering?!



Filtering in spatial domain!

-1 0 1 
-2 0 2 
-1 0 1 

* = 

Source: D. Hoiem 



Filtering in frequency domain!

FFT FFT 

Inverse FFT 
= 

Source: D. Hoiem 



Why Gaussian gives smooth output compared to box filter?!

Gaussian Box filter 

Source: D. Hoiem 



Gaussian filter!



Box filter!



Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem 



Subsampling by a factor of two!

Throw away every other row and column to create a ½ size image 



Problem: Aliasing !

•  One-dimensional example (sinewave):!
!
!



Problem: Aliasing !

•  One-dimensional example (sinewave):!
!
!



Aliasing in graphics !

!

•  Characteristic errors may appear ”checker board disintegrate”, “striped shirts look funny”,….!



Nyquist-Shannon sampling theorem !

•  When sampling a signal at discrete intervals, the sampling frequency must be ≥ 2 × fmax!

•  This allows to reconstruct the original perfectly from the sampled version!

good 

bad 



Solution: Anti-aliasing!

•  Option 1: Sample more often!

•  Option 2: Get rid of frequencies greater than half the new sampling frequency (i.e. filter)!
-> Loss of information, but still better than aliasing!

•  Example algorithm for downsampling by factor 2 (Matlab):!

1.  Apply low-pass filter!
im_blur = imfilter(image,fspecial(‘gaussian’,7,1));!

2.  Sample every other pixel !
im_small = im_blur(1:2:end , 1:2:end);!

!



Subsampling without pre-filtering!

1/4  (2x zoom) 1/8  (4x zoom) 1/2 

Credit: S. Seitz 



Subsampling with pre-filtering!

G 1/4  G 1/8 Gaussian 1/2 

Credit: S. Seitz 



Why lower resolution image still make sense? What is lost?!

Source: D. Hoiem 



Hybrid Images!

A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006!
Source: D. Hoiem 



Why do we get distance-dependent interpretation of a hybrid image?!

? 

Adapted from a slide by D. Hoiem 



Clues from Human Perception!

•  Early processing in humans filters for various orientations and scales of frequency!

•  Perceptual cues in the mid-high frequencies dominate perception!

•  When we see an image from far away, we are effectively subsampling it (and low pass filtering)!

Early Visual Processing: Multi-scale edge and blob filters 

Source: D. Hoiem 



Hybrid Image in FFT!

Hybrid Image Low-passed Image High-passed Image 

Source: D. Hoiem 



Thus, we get distance-dependent interpretation of a hybrid image!

? 

Adapted from a slide by D. Hoiem 



Template matching using filtering!



Template matching!

•  Goal: find       in image!

•  Approach: Filter image using the template!

•  What is a good filter function (i.e. similarity 
measure) between two patches?!

Source: D. Hoiem 



Matching with filters!

•  Goal: find       in image!

•  Method 1: filter the image with eye patch!
!

Input! Filtered Image!
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What went wrong?!

f = image 
g = filter 

Source: D. Hoiem 



Matching with filters!

•  Goal: find       in image!

•  Method 2: filter with zero-mean eye!
!

Input Filtered Image (scaled) Thresholded Image 
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True detections 

False 
detections 

mean of template g 



Matching with filters!

•  Goal: find       in image!

•  Method 3: Normalized cross-correlation!

!
!

Matlab: normxcorr2(template, im) 

mean image patch mean template 
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Source: D. Hoiem 



Matching with filters!

•  Goal: find       in image!

•  Method 3: Normalized cross-correlation!

!
!

Input Normalized X-Correlation Thresholded Image 

True detections 



Matching with filters!

•  Goal: find       in image!

•  Method 3: Normalized cross-correlation!

!
!

Input Normalized X-Correlation Thresholded Image 

True detections 



Q: What is the best method to use?!

!

A: Depends!

•  Zero-mean filter: fast but not a great matcher!

•  Normalized cross-correlation: slow but invariant to local average intensity and contrast!

Source: D. Hoiem 



Q: What if we want to find larger or smaller eyes?!

A: Image pyramids: multiresolution image representations!

•  Repeated decimation with a Gaussian low-pass filter gives Gaussian pyramid!



Template Matching with Image Pyramids!

Input: Image, Template!

1.  Match template at current scale!

2.  Downsample image!
•  In practice, scale step of 1.1 to 1.2!

3.  Repeat 1-2 until image is very small!

4.  Take responses above some threshold, perhaps with non-maxima suppression!

Source: D. Hoiem 

Low-Pass	
Filtered	Image	Image	

Gaussian 
Filter Sample Low-Res	

Image	



Laplacian pyramid!

•  Contains the difference images between two successive Gaussian pyramid 
levels:!



Showing, at full resolution, the information captured at each level of a Gaussian (top) and 
Laplacian (bottom) pyramid.!



Major uses of image pyramids!

•  Compression!

•  Object detection!
•  Scale search!
•  Features!

•  Detecting stable interest points !

•  Registration!
•  Coarse-to-fine!

Source: D. Hoiem 



Things to Remember!

•  Image filtering: compute function of local neighborhood at each position!
 !

•  Sometimes it makes sense to think of images and filtering in the frequency domain!
!

•  Can be faster to filter using FFT for large images (N logN vs. N2 for auto-correlation)!
!

•  Template matching: localize given template in image!
!

•  Image pyramid: multiresolution representation of image!
(Remember to low pass filter before sub-sampling)!


