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Causal questions

• We often want to evaluate the impact of X on Y, e.g.
• education on earnings
• marketing campaing on sales
• carbon tax on emissions
• R&D subsidy on innovation
• fiscal stimulus on unemployment

• These are causal questions
• requires evaluating counterfactual states of the world
• ”how would Y change if we changed X?”

• Compare to descriptive questions
• requires measuring the actual state of the world
• ”what is joint distribution of X and Y?”
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Matti Sarvimäki (Aalto) 1: Causality Mini-Course on Causal Inference 2 / 15



Causal questions

• We often want to evaluate the impact of X on Y, e.g.
• education on earnings
• marketing campaing on sales
• carbon tax on emissions
• R&D subsidy on innovation
• fiscal stimulus on unemployment

• These are causal questions
• requires evaluating counterfactual states of the world
• ”how would Y change if we changed X?”

• Compare to descriptive questions
• requires measuring the actual state of the world
• ”what is joint distribution of X and Y?”
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Randomized experiments

• The next four lectures will focus on answering causal questions using
research designs based on randomization
• the simplest context for learning relevant statistical concepts

• The prime example is randomized controlled trials (RCT)
• RCTs have become an important part of economits’ toolkit
• you might end up running them for living
• you will definitely end up interpretting results from other people’s RCTs

• Even when we can’t run an experiment, it is often helpful to ask:
what would be the ideal experiment for answering this question?
• helpful benchmark for ”naturally occurring” or ”quasi” experiments

I we’ll discuss an example of a ”natural experiment” involving actual
randomization already in the next class

I you’ll see other types of quasi-experimental approaches Ciprian’s and
Kristiina’s parts
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Today’s learning objectives

• Good understanding of why randomization eliminates selection
bias and the content and importance of the following concepts:

1 causality
2 counterfactual
3 potential outcomes
4 treatment effect
5 selection bias
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Example: Impact of a new integration program

• Imagine that you have been asked to assist the government to evaluate
a new type of integration program for immigrants

• How would you approach this task?

• My take: helpful to break this into two parts
• what is the question one needs to answer?
• how to answer it?
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Elements of causal questions

1 Treatment
• impact of [...]

2 Counterfactual
• impact in comparison to [...]

3 Outcome and population
• impact on [...]

• What is a well-defined question for our case study?
• my take: ”what is the impact of the new program in comparison to

business-as-usual programs on participants’ cumulative
unemployment benefits during their first three years in Finland?

• Next: formal definitions using the potential outcomes framework
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Matti Sarvimäki (Aalto) 1: Causality Mini-Course on Causal Inference 6 / 15



Potential Outcomes

• We focus on binary (0/1) treatments and denote treament status of individual i as

Di =

{
1 if she receives the treament

0 if she doesn’t

• We denote outcomes by y and define

potential outcome =

{
y1i if Di = 1

y0i if Di = 0

in words: y1i is the outcome of individual i in the state of the world where she is
treated and y0i is her outcome in the state of the world where she was not treated
(note: only one state of the world occurs)
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Treatment effect

• The treatment effect for individual i is:

y1i − y0i

in words: difference in the potential outcomes with and without the treatment

• The fundamental challenge of causal inference is that we cannot
observe both y1i and y0i for the same individual. Instead, we observe

yi =

{
y1i if Di = 1

y0i if Di = 0
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Treatment effect

• We can never identify the treatment effect for an individual person,
but sometimes we can estimate average treatment effects:

Average treatment effect (ATE) = E [yi1 − y0i ]

ATE for the treated (ATT) = E [yi1 − y0i |Di = 1]

where E [a|b] is the expectation of a conditional on b

• Why ATE and ATT?
• treatment effect may be different for those getting the treatment than it

would be for those not getting it (e.g. specific integration policy)
• internal validity: do we learn the true effect for the treated population?
• external validity: can we extrapolate to other populations?
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Research designs and control groups

• We use a comparison or control group to approximate what would
have happened to the treated in the absence of the treatment
• that is, we estimate the counterfactual E[y0i |Di = 1]

• In economics parlance, this approach is know as ”design-based” or
”reduced form” or ”experimental” approach
• the alternative is the ”structural” approach, where we use quantitative

economic models to simulate counterfactual states of the world

• Invalid control group leads to selection bias
• whether the control group provides a good counterfactual or not is the

key question of all design-based causal inference
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Selection Bias

• As the amount of data increases, the sample averages approach the
population average (expectations)

Avg [yi |D = 1]︸ ︷︷ ︸
treatment group

− Avg [yi |D = 0]︸ ︷︷ ︸
control group

→ E[yi |D = 1]− E[yi |D = 0]

= E[y1i |D = 1]− E[y0i |D = 0]

• Where the second row emphasizes that we observe y0i only for the
control group, while our objective is to estimate ATT, i.e.

E [yi1 − y0i |Di = 1] = E[y1i |D = 1]− E[y0i |D = 1]︸ ︷︷ ︸
never observed

• Selection bias arises when a control group leads to an incorrect
estimate of the counterfactual, i.e. E[y0i |D = 0] 6= E[y0i |D = 1]
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Matti Sarvimäki (Aalto) 1: Causality Mini-Course on Causal Inference 11 / 15



Selection Bias

• A particularly informative way to illustrate selection bias is:

E[yi |D = 1]− E[yi |D = 0] = E[y1i |D = 1]− E[y0i |D = 0]

= E[y1i |D = 1]− E[y0i |D = 1]︸ ︷︷ ︸
ATT

+

E[y0i |D = 1]− E[y0i |D = 0]︸ ︷︷ ︸
Selection bias

where the first step is from the previous slide and the second step is
taken by simply adding and substracting E[y0i |D = 1]
• i.e. E[y0i |D = 1]− E[y0i |D = 1] = 0, so including it does not change

the result, but allows us to rewrite the equation as ATT+SB
• in words: differences in the average outcomes between treatment and

control groups include the treatment effect and the selection bias (the
difference between the two groups if neither had been treated)
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In-class discussion: Selection bias and integration policies

• Let’s return to the case of new integration program and speculate
about the likely selection bias in two alternative control groups:

1 all immigrants not participating in the program
2 all immigrants participating in the business-as-usual program

• What would be an ideal way to create a control group?
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Randomization eliminates selection bias

• Random assignment into treatment/control ensures that the control
groups is comparable to the treatment group

• Formally: their potential outcomes are in expectation the same, i.e.

E[y1i |D = 1] = E[y1i |D = 0]

E[y0i |D = 1] = E[y0i |D = 0]

• Thus E[y0i |D = 1]− E[y0i |D = 0] = 0, i.e. no selection bias
• in words: the control group tells us what would have happened to the

treatment group in the absence of the treatment
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Summary

• Causality: how one thing affects another thing
• requires comparing counterfactual states of the world to each other

(”how would Y change if we changed X?”)
• at most, one of them is observed

• Control group in an experimental research design
• the outcomes of the control group are used to infer what would have happened to the

treatment group in the absence of the treatment

• Selection bias occurs when the control group is not comparable to the treatment group,
i.e. E[y0i |D = 0] 6= E[y0i |D = 1]

= potential outcomes differ between the treatment and control groups

• Randomization eliminates selection bias
• on expectation, the only difference between the groups is that the treatment group gets the

treatment and the control group does not
→ differences in average outcomes must be due to the treatment
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