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Hypothesis testing and statistical significance

• The question: How likely it is that the difference between treatment
and control groups could be due to chance?
• i.e. test the null hypothesis that the treatment had no effect

• Learning objectives. You understand the following concepts:

1 point estimates
2 standard errors
3 p-values
4 statistical significance
5 t-statistics
6 critical values
7 confidence intervals

and how to use them to interpret basic empirical results.
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Example: Gender and policy decisions

Econometrica, Vol. 72, No. 5 (September, 2004), 1409–1443

WOMEN AS POLICY MAKERS: EVIDENCE FROM A RANDOMIZED
POLICY EXPERIMENT IN INDIA

BY RAGHABENDRA CHATTOPADHYAY AND ESTHER DUFLO1

This paper uses political reservations for women in India to study the impact of
women’s leadership on policy decisions. Since the mid-1990’s, one third of Village
Council head positions in India have been randomly reserved for a woman: In these
councils only women could be elected to the position of head. Village Councils are re-
sponsible for the provision of many local public goods in rural areas. Using a dataset we
collected on 265 Village Councils in West Bengal and Rajasthan, we compare the type
of public goods provided in reserved and unreserved Village Councils. We show that
the reservation of a council seat affects the types of public goods provided. Specifically,
leaders invest more in infrastructure that is directly relevant to the needs of their own
genders.

KEYWORDS: Gender, decentralization, affirmative action, political economy.
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Example: Gender and policy decisions

• Here is an extract from their Table V:
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TABLE V
EFFECT OF WOMEN’S RESERVATION ON PUBLIC GOODS INVESTMENTS

West Bengal Rajasthan
Mean, Reserved GP Mean, Unreserved GP Difference Mean, Reserved GP Mean, Unreserved GP Difference

Dependent Variables (1) (2) (3) (4) (5) (6)
A. Village Level
Number of Drinking Water Facilities 23!83 14!74 9!09 7!31 4!69 2!62

Newly Built or Repaired (5!00) (1!44) (4!02) (!93) (!44) (!95)
Condition of Roads (1 if in good !41 !23 !18 !90 !98 −!08

condition) (!05) (!03) (!06) (!05) (!02) (!04)
Number of Panchayat Run !06 !12 −!06

Education Centers (!02) (!03) (!04)
Number of Irrigation Facilities 3!01 3!39 −!38 !88 !90 −!02

Newly Built or Repaired (!79) (!8) (1!26) (!05) (!04) (!06)
Other Public Goods (ponds, biogas, 1!66 1!34 !32 !19 !14 !05

sanitation, community buildings) (!49) (!23) (!48) (!07) (!06) (!09)
Test Statistics: Difference Jointly Significant 4!15 2!88

(p-value) (!001) (!02)
B. GP Level
1 if a New Tubewell Was Built 1!00 !93 !07

(!02) (!03)
1 if a Metal Road Was Built or Repaired !67 !48 !19

(!06) (!05) (!08)
1 if There Is an Informal Education !67 !82 −!16

Center in the GP (!06) (!04) (!07)
1 if at Least One Irrigation Pump Was Built !17 !09 !07

(!05) (!03) (!05)
Test Statistics: Difference Jointly Significant 4!73

(p-value) (!001)
Notes: 1. Standard errors in parentheses. 2. In West Bengal, there are 322 observations in the village level regressions, and 161 in the GP level regressions. There are

100 observations in the Rajasthan regressions. 3. Standard errors are corrected for clustering at the GP level in the village level regressions, using the Moulton (1986) formula,
for the West Bengal regressions.

• Data: 161 GPs out of which 54 were reserved for women leaders
I first row of columns (1) and (2) reports averages
I first row of column (3) report difference in averages
I second row, col (3) reports the standard error (SE)

• This lecture: How to correctly interpret point estimates and SEs
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Point estimate and statistical significance

• In the example above, we had the following sample averages

ȳ1 = Avg [y |D = 1] = 23.8

ȳ0 = Avg [y |D = 0] = 14.7

where D = 1 denotes the GP being reserved for female leader

• ȳ1 − ȳ0 = 9.1 is the point estimate
• the most likely impact is that, on average, 9.1 more drinking facilities

are build per village when a GP is led by a woman
• research design / identification: GPs were randomly assigned into

treatment and control groups and thus selection bias is unlikely
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Point estimate and statistical significance

• However, the point estimate may differ from zero because:

1 female leaders are more likely to invest in drinking water
2 the 54 treatment GPs just happen to invest more in drinking water

(for reasons that have nothing to do with the gender of their leader)

• Question: How likely are we to get a point estimate of at least 9.1 just
due to random variation across GPs?
• the convention is to call an estimate ”statistically significant” if the

likelihood of a chance finding is below 5%
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Simulating a test distribution

• An intuitive way to think about randomly occurring differences
between groups is to create a distribution of ”placebo” treatments

• Split the GPs into two random groups and
calculate their averages
• you can get the data here
• ... and my simulation code here

• Note that E[y |Dpl = 1] = E[y |Dpl = 0]
• the ”placebo” assignments Dpl are

made-up and thus have no impact
• but: as the table shows, with just 54 GPs

in the ”treatment” group, the differences
can sometimes be large

Avg [y|Rr = 1] Avg [y|Rr = 1] Difference

16.88 19.10 -2.22
18.49 18.35 0.14
14.51 20.28 -5.77
16.58 19.16 -2.58
18.29 18.45 -0.16
13.35 21.41 -8.07
17.14 19.03 -1.89
20.68 17.30 3.37
16.20 19.46 -3.26
21.37 17.16 4.21

“Treatment” “Control” Diff

15.80 19.66 -3.86
14.63 20.22 -5.59
17.10 19.03 -1.92
17.85 18.67 -0.81
13.22 20.90 -7.68
15.23 19.93 -4.70
16.91 19.12 -2.21
16.21 19.46 -3.24
21.69 16.81 4.88
19.98 17.64 2.34

1

10 ”placebo” simulations
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Simulating a test distribution

point estim
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• Simulation with 10,000 rounds
• average: -0.099
• standard deviation: 4.03

• As you see from the histogram, sometimes
random splits of the sample yield differences
that are larger than the point estimate
• the largest difference is 14.97

• However, this is quite rare:
• difference > point estimate in 1.1% of the

simulation rounds
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P-value
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• p-value: the probability of obtaining a
result at least as extreme as the result
actually observed under the null hypothesis
• here, the null hypothesis is zero treatment

effect, i.e. H0 : E[y |D = 1] = E[y |D = 0]

• ”2-sided” test: what is the likelihood that
we’d find such a large deviation (in absolute
value) from zero by chance?
• here, the answer is 1.4%
• by convention, estimates are called

”statistically significant” (we reject the null
hypothesis) if their p-value is less than 5%

• this is not necessarily a good convention
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Central limit theorem
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• Above, we used a simulated test
distribution to calculate p-values
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• Above, we used a simulated test
distribution to calculate p-values
• the simulated distribution looks

a lot like a Normal distribution

• Indeed, one of the most striking results in
statistics is the Central Limit Theorem
• the sampling distribution of the sample

mean of a large number of independent
random variabes is approximately Normal

→ We can approximate the test distribution
instead of simulating it
• saves a lot of computing time
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Standard errors

• Standard error (SE) summarizes the variability in the treatment effect estimate.

In our example:

ŜE = S(Yi )

√
1

n1
+

1

n0

= 18.4

√
1

54
+

1

107

= 4.02

where S(yi ) is the sample standard deviation of y in the pooled sample, and n1 and n0 are the

number of observations in the treatment and control groups

• close to the standard deviation of 4.03 in our simulated test distribution
• it is also the number reported in parentheses of Table V

• Estimates more precise when:

1 the outcome variable has less variation [lower S(yi )]
2 the experiment is larger [higher n1 and/or n0]
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Sarvimäki 2: Statistical Inference Mini-Course on Causal Inference 11 / 17



Standard errors

• Standard error (SE) summarizes the variability in the treatment effect estimate.
In our example:
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Sarvimäki 2: Statistical Inference Mini-Course on Causal Inference 11 / 17



Standard errors

• Standard error (SE) summarizes the variability in the treatment effect estimate.
In our example:
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t-statistic and significance testing

• t-statistic = point estimate / SE. In our
example:

t =
9.1

4.02
= 2.26

• How exceptional would it be to draw 2.26 or
more from a standard Normal distribution?
• fact: t ∼ N (0, 1) (approximately)
→ the likelihood of drawing -2.26
(or less) is 1.19%
→ the (two-sided) p-value is
2× 0.0119 = 0.0238

2.26

-2.26

1.2%1.2%

-3.5 -3 -2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2 2.5 3 3.5
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Critical values and a rule-of-thumb

• Critical value is a point in the test distribution
corresponding to a specific p-value
• in large samples, a t-statistic of 1.96 corres-

ponds to a p-value of 0.05 in a 2-sided test

→ A common rule-of-thumb is to call a result
”statistically significant” if the point estimate
is at least twice as large as its standard error

1.96

-1.96

2.5%2.5%

-3.5 -3 -2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2 2.5 3 3.5
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Confidence intervals

• Often the relevant question is how large/small effects we can rule out
• instead of testing whether we can reject the null hypothesis of no effect

at some confidence level (as in the previous slides)

• We answer this using confidence intervals. For example, the 95%
confidence interval is

[β̂ − 1.96× ŜE , β̂ + 1.96× ŜE ]

where β̂ is the point estimate and ŜE the estimated standard error

• In our example, we had β̂ = 9.1, ŜE = 4.02 → the 95% CI is

[9.1− 1.96× 4.02, 9.1 + 1.96× 4.02]⇔ [1.2, 17.0]
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Confidence intervals

9.1

1.2 17

-4 -2 0 2 4 6 8 10 12 14 16 18 20

• CIs are often presented graphically
• e.g. the point estimate and 95% CI for our

running example would look like this

• Helps to clarify that an estimate can be
statistically insignificant because

1 estimate is small and precisely estimated →
we can rule out economically significant effects

2 estimate is imprecisely estimated → we
cannot rule out much
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Source: Amrhein et al. (2019)
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Summary

• Standard error is the standard deviation of a statistic
• tells how precise our point estimate is
• estimates become more precise (smaller SE) as the sample

size increases or variation in the outcome variable decreases

• P-value is the probability of obtaining a result at least as extreme as
the result actually observed if the null hypothesis is true
• convention to call results ”statistically significant” if p < .05
• corresponds to |point estimate| ≥ 2× standard error

• Confidence interval includes values most compatible with the data
• the point estimate is the most compatible value
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