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Lecture	3:	Image	features	
	
•  Low-level	features	(edges,	corners,	texture	patches)	are	
needed	for	many	tasks:	
–  Image	matching	and	registration	
–  Structure-from-motion	and	image-based	3D	modeling	
–  Image	segmentation	
–  Image	retrieval	
	

•  Relevant	reading:	
–  Szeliski’s	book	(1st	edition	Chapter	4	or	2nd	edition	Chapter	7)	
–  David	Lowe’s	article	(2004)		

	http://www.cs.ubc.ca/~lowe/keypoints/		
	
Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Steve	Seitz,	David	Lowe,	
Kristen	Grauman,	and	others	(detailed	credits	on	individual	slides)	
	
	



Edge detection 
•  An edge is a place of rapid change in the 

image intensity function 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

Source: S. Lazebnik 



Derivatives with convolution 
For 2D function f(x,y), the partial derivative is: 
 
 
 
 

For discrete data, we can approximate using finite 
differences: 
 
 
 
To implement the above as convolution, what would be  
the associated filter? 
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Source: K. Grauman 



Partial derivatives of an image 

Which shows changes with respect to x? 
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Source: S. Lazebnik 



The gradient points in the direction of most rapid increase 
in intensity 
 
 
 

Image gradient 

The gradient of an image:  
 

 
  

The gradient direction is given by 

Source: Steve Seitz 

The edge strength is given by the gradient magnitude 

•  How does this direction relate to the direction of the edge? 



Effects of noise 
Consider a single row or column of the image 

Where is the edge? 
Source: S. Seitz 



Solution: smooth first 

•  To find edges, look for peaks in )( gf
dx
d
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Source: S. Seitz 



•  Differentiation is convolution, and convolution 
is associative: 
 

•  This saves us one operation: 
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Source: S. Seitz 



Derivative of Gaussian filters 

Which one finds horizontal/vertical edges? 

x-direction y-direction 

Source: S. Lazebnik 



Derivative of Gaussian filters 

These filters are separable 

x-direction y-direction 

Source: S. Lazebnik 



Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales” 

1 pixel 3 pixels 7 pixels 

Scale of Gaussian derivative filter 

Source: D. Forsyth 



Review: Smoothing vs. derivative filters 
Smoothing filters 

•  Gaussian: remove “high-frequency” components;  
“low-pass” filter 

•  Can the values of a smoothing filter be negative? 
•  What should the values sum to? 

–  One: constant regions are not affected by the filter 
 

 
 

Derivative filters 
•  Derivatives of Gaussian 
•  Can the values of a derivative filter be negative? 
•  What should the values sum to?  

–  Zero: no response in constant regions 
 

Source: S. Lazebnik 



Keypoint extraction: Corners 

9300 Harris Corners Pkwy, Charlotte, NC 

Source: S. Lazebnik 



Why extract keypoints? 
•  Motivation: panorama stitching 

•  We have two images – how do we combine them? 

Source: S. Lazebnik 



Why extract keypoints? 
•  Motivation: panorama stitching 

•  We have two images – how do we combine them? 

Step 1: extract keypoints 
Step 2: match keypoint features 

Source: S. Lazebnik 



Why extract keypoints? 
•  Motivation: panorama stitching 

•  We have two images – how do we combine them? 

Step 1: extract keypoints 
Step 2: match keypoint features 
Step 3: align images 

Source: S. Lazebnik 



Characteristics of good keypoints 

•  Repeatability 
•  The same keypoint can be found in several images despite geometric 

and photometric transformations  

•  Saliency 
•  Each keypoint is distinctive 

•  Compactness and efficiency 
•  Many fewer keypoints than image pixels 

•  Locality 
•  A keypoint occupies a relatively small area of the image; robust to 

clutter and occlusion 
Source: S. Lazebnik 



Applications   
Keypoints are used for: 

•  Image alignment  
•  3D reconstruction 
•  Motion tracking 
•  Robot navigation 
•  Indexing and database retrieval 
•  Object recognition 

Source: S. Lazebnik 



Corner Detection: Basic Idea 

•  We should easily recognize the point by 
looking through a small window 

•  Shifting a window in any direction should 
give a large change in intensity 

“edge”: 
no change along 
the edge 
direction 

“corner”: 
significant 
change in all 
directions 

“flat” region: 
no change in 
all directions 

Source: S. Lazebnik 



Corner Detection: Mathematics 

Change in appearance of window W for the shift [u,v]: 

I(x, y) 
E(u, v) 

E(3,2) 

E(u,v) = [I(x +u, y+ v)− I(x, y)]2
(x,y)∈W
∑

Source: S. Lazebnik 



Corner Detection: Mathematics 

I(x, y) 
E(u, v) 

E(0,0) 

Change in appearance of window W for the shift [u,v]: 

E(u,v) = [I(x +u, y+ v)− I(x, y)]2
(x,y)∈W
∑

Source: S. Lazebnik 



Corner Detection: Mathematics 

We want to find out how this function behaves for 
small shifts 

E(u, v) 

Change in appearance of window W for the shift [u,v]: 

E(u,v) = [I(x +u, y+ v)− I(x, y)]2
(x,y)∈W
∑

Source: S. Lazebnik 



Corner Detection: Mathematics 
•  First-order Taylor approximation for small 

motions [u, v]: 

 
•  Let’s plug this into E(u,v): 
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Source: S. Lazebnik 



Corner Detection: Mathematics 
The quadratic approximation can be written as 

where M is a second moment matrix computed from image 
derivatives: 
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(the sums are over all the pixels in the window W) 

Source: S. Lazebnik 



•  The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape. 

•  Specifically, in which directions  
does it have the smallest/greatest 
change? 

Interpreting the second moment matrix 
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Consider a horizontal “slice” of E(u, v): 

Interpreting the second moment matrix 

This is the equation of an ellipse. 
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Source: S. Lazebnik 



Consider a horizontal “slice” of E(u, v): 

Interpreting the second moment matrix 

This is the equation of an ellipse. 
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The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R 

 
direction of the 
slowest change 

direction of the 
fastest change 

(λmax)-1/2 

(λmin)-1/2 

const][ =⎥
⎦

⎤
⎢
⎣

⎡

v
u

Mvu

Diagonalization of M: 

Source: S. Lazebnik 



Consider the axis-aligned case (gradients 
are either horizontal or vertical) 

If either a or b is close to 0, then this is not a corner, 
so look for locations where both are large.

Interpreting the second moment matrix 
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Source: S. Lazebnik 



Visualization of second moment matrices 

Source: S. Lazebnik 



Visualization of second moment matrices 

Source: S. Lazebnik 



Interpreting the eigenvalues 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues 
of M: 

Source: S. Lazebnik 



Corner response function 

“Corner” 
R > 0 

“Edge”  
R < 0 

“Edge”  
R < 0 

“Flat” 
region 

|R| small 

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR

α: constant (0.04 to 0.06) 

Source: S. Lazebnik 



The Harris corner detector 

1.  Compute partial derivatives at each pixel 
2.  Compute second moment matrix M in a 

Gaussian window around each pixel:  

C.Harris and M.Stephens. 
“A Combined Corner and Edge Detector.” Proceedings of the 4th Alvey 
Vision Conference: pages 147—151, 1988.   
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Source: S. Lazebnik 



The Harris corner detector 

1.  Compute partial derivatives at each pixel 
2.  Compute second moment matrix M in a 

Gaussian window around each pixel  
3.  Compute corner response function R 

C.Harris and M.Stephens. 
“A Combined Corner and Edge Detector.” Proceedings of the 4th Alvey 
Vision Conference: pages 147—151, 1988.   

Source: S. Lazebnik 



Harris Detector: Steps 
Source: S. Lazebnik 



Harris Detector: Steps 
Compute corner response R 

Source: S. Lazebnik 



The Harris corner detector 

1.  Compute partial derivatives at each pixel 
2.  Compute second moment matrix M in a 

Gaussian window around each pixel  
3.  Compute corner response function R 
4.  Threshold R
5.  Find local maxima of response function 

(nonmaximum suppression) 

C.Harris and M.Stephens. 
“A Combined Corner and Edge Detector.” Proceedings of the 4th Alvey 
Vision Conference: pages 147—151, 1988.   

Source: S. Lazebnik 



Harris Detector: Steps 
Find points with large corner response: R > threshold 

Source: S. Lazebnik 



Harris Detector: Steps 
Take only the points of local maxima of R 

Source: S. Lazebnik 



Harris Detector: Steps 
Source: S. Lazebnik 



Robustness of corner features 
•  What happens to corner features when the image undergoes 

geometric or photometric transformations? 

Source: S. Lazebnik 



Affine intensity change 

•    Only derivatives are used => 
invariance to intensity shift I → I + b 

•    Intensity scaling: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change 

I → a I + b 

Source: S. Lazebnik 



Image translation 

•   Derivatives and window function are shift-invariant 

Corner location is covariant w.r.t. translation 

Source: S. Lazebnik 



Image rotation 

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same 

Corner location is covariant w.r.t. rotation 

Source: S. Lazebnik 



Scaling 

All points will 
be classified 
as edges 

Corner 

Corner location is not covariant to scaling! 

Source: S. Lazebnik 



SIFT keypoint detection 

D. Lowe, Distinctive image features from scale-invariant keypoints, 
IJCV 60 (2), pp. 91-110, 2004.  

Source: S. Lazebnik 



Keypoint detection with scale selection 
•  We want to extract keypoints with 

characteristic scale that is covariant with the 
image transformation 

Source: S. Lazebnik 



Basic idea 

•  Convolve the image with a “blob filter” at 
multiple scales and look for extrema of filter 
response in the resulting scale space 

T. Lindeberg. Feature detection with automatic scale selection.  
IJCV 30(2), pp 77-116, 1998.  

Source: S. Lazebnik 



Blob detection 

Find maxima and minima of blob filter response 
in space and scale 

* =	

maxima	

minima	

Source: N. Snavely 

Source: S. Lazebnik 



Blob filter 
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D 
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Source: S. Lazebnik 



Recall: Edge detection 

g
dx
df ∗

f 

g
dx
d

Source: S. Seitz 

Edge 

Derivative 
of Gaussian 

Edge = maximum 
of derivative 

Source: S. Lazebnik 



Edge detection, Take 2 

g
dx
df 2

2

∗

f 

g
dx
d
2

2

Edge 

Second derivative 
of Gaussian  
(Laplacian) 

Edge = zero crossing 
of second derivative 

Source: S. Seitz 

Source: S. Lazebnik 



From edges to blobs 
•  Edge = ripple 
•  Blob = superposition of two ripples 

Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob 

maximum 

Source: S. Lazebnik 



Scale selection 
•  We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 
scales and looking for the maximum response 

•  However, Laplacian response decays as scale 
increases: 

increasing σ original signal 
(radius=8) 

Source: S. Lazebnik 



Scale normalization 
•  The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ 
increases 

 

πσ 2
1

Source: S. Lazebnik 



Scale normalization 
•  The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ 
increases 

•  To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ 

•  Laplacian is the second Gaussian derivative, 
so it must be multiplied by σ2 

Source: S. Lazebnik 



Effect of scale normalization 

Scale-normalized Laplacian response 

Unnormalized Laplacian response Original signal 

maximum 

Source: S. Lazebnik 



Blob detection in 2D 
•  Scale-normalized Laplacian of Gaussian: 
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Source: S. Lazebnik 



Blob detection in 2D 
•  At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 

r 

image Laplacian 

Source: S. Lazebnik 



Blob detection in 2D 
•  At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 
•  To get maximum response, the zeros of the Laplacian 

have to be aligned with the circle 
•  The Laplacian is given by (up to scale): 

 
 

•  Therefore, the maximum response occurs at  

r 

image 

222 2/)(222 )2( σσ yxeyx +−−+
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circle 

Laplacian 

0 

Source: S. Lazebnik 



Scale-space blob detector 
1.  Convolve image with scale-normalized 

Laplacian at several scales 

Source: S. Lazebnik 



Scale-space blob detector: Example 

Source: S. Lazebnik 



Scale-space blob detector: Example 

Source: S. Lazebnik 



Scale-space blob detector 
1.  Convolve image with scale-normalized 

Laplacian at several scales 
2.  Find maxima of squared Laplacian response 

in scale-space 

Source: S. Lazebnik 



Scale-space blob detector: Example 

Source: S. Lazebnik 



Eliminating edge responses 
•  Laplacian has strong response along edge 

Source: S. Lazebnik 



Eliminating edge responses 
•  Laplacian has strong response along edge 

•  Solution: filter based on Harris response function 
over neighboroods containing the “blobs” 

Source: S. Lazebnik 



•  Approximating the Laplacian with a 
difference of Gaussians: 

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian) 

(Difference of Gaussians) 

Efficient implementation 

Source: S. Lazebnik 



Efficient implementation 

David G. Lowe. 
"Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004.  

Source: S. Lazebnik 



From feature detection to feature description 
•  Scaled and rotated versions of the same 

neighborhood will give rise to blobs that are related by 
the same transformation 

•  What to do if we want to compare the appearance of 
these image regions? 

•  Normalization: transform these regions into same-
size circles 

•  Problem: rotational ambiguity 

Source: S. Lazebnik 



Eliminating rotation ambiguity 
•  To assign a unique orientation to circular 

image windows: 
•  Create histogram of local gradient directions in the patch 
•  Assign canonical orientation at peak of smoothed histogram 

0 2 π 

Source: S. Lazebnik 



SIFT features 
•  Detected features with characteristic scales 

and orientations: 

David G. Lowe. 
"Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004.  Source: S. Lazebnik 



From feature detection to feature description 

Detection is covariant: 
 features(transform(image)) = transform(features(image)) 

Description is invariant: 
 features(transform(image)) = features(image) 

 Source: S. Lazebnik 



SIFT descriptors 
•  Inspiration: complex neurons in the primary 

visual cortex 

D. Lowe. Distinctive image features from scale-invariant keypoints. 
IJCV 60 (2), pp. 91-110, 2004.  

Source: S. Lazebnik 



SIFT descriptor computation 
•  use the normalized region about the keypoint 
•  compute gradient magnitude and orientation at 

each point in the region 
•  weight them by a Gaussian window overlaid on 

the circle 
•  create an orientation histogram over the 4 X 4 

subregions of the window 
•  4 X 4 descriptors over 16 X 16 sample array 

were used in practice. 4 X 4 times 8 directions 
gives a vector of 128 values. 

... 



Summary of SIFT feature detection and description 

1.  Scale-space extrema detection 

2.  Keypoint localization 

3.  Orientation assignment 

4.  Keypoint description 

Search over multiple scales and image locations. 

Fit a model to detrmine location and scale. 
Select keypoints based on a measure of stability. 

Compute best orientation(s) for each keypoint region. 

Use local image gradients at selected scale and rotation 
to describe each keypoint region. 



Matching SIFT Descriptors 
 
Simply match nearest neighbors in descriptor 
space (Euclidean distance) 
 
Or  
 
Take those matches for which the ratio of 
distances to nearest and 2nd nearest descriptor 
is small as it will give more uniquely matching 
regions (more details in Lecture 5) 

Lowe IJCV 2004 

Source: D. Hoiem 



Properties of SIFT 
Extraordinarily robust detection and description technique 

•  Can handle changes in viewpoint 
–  Up to about 60 degree out-of-plane rotation 

•  Can handle significant changes in illumination 
–  Sometimes even day vs. night 

•  Fast and efficient—can run in real time 
•  Lots of code available 

Source: N. Snavely 



A hard keypoint matching problem 

NASA Mars Rover images 

Source: S. Lazebnik 



NASA Mars Rover images 
with SIFT feature matches 
Figure by Noah Snavely 

Answer below (look for tiny colored squares…) 

Source: S. Lazebnik 



Thank you 
 
Next lecture: Model estimation 


