
Computer	Vision	

CS-E4850,	5	study	credits	
Lecturer:	Juho	Kannala	

	

Lecture	4:	Model	estimation	(fitting)	
•  Least-squares	
•  Robust	fitting	
•  RANSAC	
•  Hough	transform	

These	topics	are	covered	in	Szeliski’s	book	briefly,	but	more	
thoroughly	in	Chapter	17	of	Forsyth	&	Ponce:	
http://courses.cs.washington.edu/courses/cse455/02wi/
readings/book-7-revised-a-indx.pdf	
	
Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	
Kristen	Grauman,	David	Forsyth,	Marc	Pollefeys,	and	others	(detailed	
credits	on	individual	slides)	

	
	

Relevant	reading	

•  These	topics	are	covered	in	Szeliski’s	book	briefly,	but	
more	thoroughly	in	the	following	books:	

–  Chapter	17	of	Forsyth	&	Ponce:	
http://cmuems.com/excap/readings/forsyth-ponce-computer-
vision-a-modern-approach.pdf	

–  Chapter	4	of	Hartley	&	Zisserman:	
http://cvrs.whu.edu.cn/downloads/ebooks/
Multiple%20View%20Geometry%20in%20Computer%20Vision%2
0(Second%20Edition).pdf	
	

	
	

	

Fitting

•  We’ve learned how to
detect edges, corners,
blobs. Now what?

•  We would like to form a
higher-level, more
compact representation of
the features in the image
by grouping multiple
features according to a
simple model

Source: S. Lazebnik

Source: K. Grauman

Fitting
•  Choose a parametric model to represent a set

of features

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

•  Noise in the measured feature locations
•  Extraneous data: clutter (outliers), multiple lines
•  Missing data: occlusions

Case study: Line detection

Source: S. Lazebnik

Fitting: Overview
•  If we know which points belong to the line,

how do we find the “optimal” line parameters?
•  Least squares

•  What if there are outliers?
•  Robust fitting, RANSAC

•  What if there are many lines?
•  Voting methods: RANSAC, Hough transform

•  What if we’re not even sure it’s a line?
•  Model selection (not covered)

Source: S. Lazebnik

Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

Source: S. Lazebnik

Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize

022 =−= YXXBX
dB
dE TT

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=−=
b
m

B
x

x
X

y

y
YXBYE

nn 1

1
 where

11
2

!!!

Normal equations: least squares solution to
XB=Y

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

YXXBX TT =

)()()(2)()(2 XBXBYXBYYXBYXBYXBYE TTTT +−=−−=−=

Source: S. Lazebnik

Problem with “vertical” least squares
•  Not rotation-invariant
•  Fails completely for vertical lines

Source: S. Lazebnik

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|

∑ =
−+=

n

i ii dybxaE
1

2)((xi, yi)

ax+by=d
Unit normal:

N=(a, b)

Source: S. Lazebnik

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
Find (a, b, d) to minimize the sum of
squared perpendicular distances ∑ =

−+=
n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

∑ =
−+=

n

i ii dybxaE
1

2)(

Unit normal:
N=(a, b)

Source: S. Lazebnik

Total least squares
Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
Find (a, b, d) to minimize the sum of
squared perpendicular distances ∑ =

−+=
n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

∑ =
−+=

n

i ii dybxaE
1

2)(

Unit normal:
N=(a, b)

0)(2
1

=−+−=
∂

∂
∑ =

n

i ii dybxa
d
E ybxay

n
bx

n
ad n

i i
n

i i +=+= ∑∑ == 11

)()())()((

2
11

1
2 UNUN

b
a

yyxx

yyxx
yybxxaE T

nn

n

i ii =⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

=−+−=∑ =
!!

0)(2 == NUU
dN
dE T

Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution
to homogeneous linear system UN = 0)

Source: S. Lazebnik

Least squares: Robustness to noise
Least squares fit to the red points:

Source: S. Lazebnik

Least squares: Robustness to noise
Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Source: S. Lazebnik

Robust estimators
•  General approach: find model parameters θ that minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

()()σθρ ;,iii xr∑

The robust function
ρ behaves like
squared distance for
small values of the
residual u but
saturates for larger
values of u

Source: S. Lazebnik

Choosing the scale: Just right

The effect of the outlier is minimized

Source: S. Lazebnik

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small
Source: S. Lazebnik

Choosing the scale: Too large

Behaves much the same as least squares

Source: S. Lazebnik

Robust estimation: Details
•  Robust fitting is a nonlinear optimization

problem that must be solved iteratively
•  Least squares solution can be used for

initialization
•  Scale of robust function should be chosen

adaptively based on median residual

Source: S. Lazebnik

RANSAC
•  Robust fitting can deal with a few outliers –

what if we have very many?
•  Random sample consensus (RANSAC):

Very general framework for model fitting in
the presence of outliers

•  Outline
•  Choose a small subset of points uniformly at random
•  Fit a model to that subset
•  Find all remaining points that are “close” to the model and

reject the rest as outliers
•  Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.
Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

Source: S. Lazebnik

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares	fit	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Uncontaminated	sample	

Source: R. Raguram

RANSAC for line fitting example

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Source: R. Raguram

Source: S. Lazebnik

RANSAC for line fitting
Repeat N times:
•  Draw s points uniformly at random
•  Fit line to these s points
•  Find inliers to this line among the remaining

points (i.e., points whose distance from the
line is less than t)

•  If there are d or more inliers, accept the line
and refit using all inliers

Source: S. Lazebnik

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

Choosing the parameters

() ()()sepN −−−= 11log/1log

()() pe
Ns −=−− 111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

•  Initial number of points s
•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Choosing the parameters
•  Initial number of points s

•  Typically minimum number needed to fit the model

•  Distance threshold t
•  Choose t so probability for inlier is p (e.g. 0.95)
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

•  Number of samples N
•  Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

•  Consensus set size d
•  Should match expected inlier ratio

Source: M. Pollefeys

Adaptively determining the number of samples

•  Outlier ratio e is often unknown a priori, so
pick worst case, e.g. 50%, and adapt if more
inliers are found, e.g. 80% would yield e=0.2

•  Adaptive procedure:
•  N=∞, sample_count =0
•  While N >sample_count

– Choose a sample and count the number of inliers
–  If inlier ratio is highest of any found so far, set

e = 1 – (number of inliers)/(total number of points)
– Recompute N from e:

–  Increment the sample_count by 1

() ()()sepN −−−= 11log/1log

Source: M. Pollefeys

RANSAC pros and cons
•  Pros

•  Simple and general
•  Applicable to many different problems
•  Often works well in practice

•  Cons
•  Lots of parameters to tune
•  Doesn’t work well for low inlier ratios (too many iterations,

or can fail completely)
•  Can’t always get a good initialization

of the model based on the minimum
number of samples

Source: S. Lazebnik

Fitting: Review
•  Least squares
•  Robust fitting
•  RANSAC

Source: S. Lazebnik

Fitting: Review
ü  If we know which points belong to the line,

how do we find the “optimal” line
parameters?
ü  Least squares

ü  What if there are outliers?
ü Robust fitting, RANSAC

•  What if there are many lines?
•  Voting methods: RANSAC, Hough transform

Source: S. Lazebnik

Fitting: The Hough transform
Source: S. Lazebnik

Voting schemes
•  Let each feature vote for all the models that

are compatible with it
•  Hopefully the noise features will not vote

consistently for any single model
•  Missing data doesn’t matter as long as there

are enough features remaining to agree on a
good model

Source: S. Lazebnik

Hough transform
•  An early type of voting scheme
•  General outline:

•  Discretize parameter space into bins
•  For each feature point in the image, put a vote in every bin in

the parameter space that could have generated this point
•  Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Source: S. Lazebnik

Parameter space representation
•  A line in the image corresponds to a point in

Hough space

Image space Hough parameter space

Source: S. Seitz

Source: S. Lazebnik

Parameter space representation
•  What does a point (x0, y0) in the image space

map to in the Hough space?

Image space Hough parameter space

Source: S. Lazebnik

Parameter space representation
•  What does a point (x0, y0) in the image space

map to in the Hough space?
•  Answer: the solutions of b = –x0m + y0
•  This is a line in Hough space

Image space Hough parameter space

Source: S. Lazebnik

Parameter space representation

•  Where is the line that contains both (x0, y0) and
(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Lazebnik

Parameter space representation

•  Where is the line that contains both (x0, y0) and
(x1, y1)?
•  It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Lazebnik

•  Problems with the (m,b) space:
•  Unbounded parameter domains
•  Vertical lines require infinite m

Parameter space representation
Source: S. Lazebnik

•  Problems with the (m,b) space:
•  Unbounded parameter domains
•  Vertical lines require infinite m

•  Alternative: polar representation

Parameter space representation

ρθθ = + sincos yx

Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space

Source: S. Lazebnik

Algorithm outline
•  Initialize accumulator H

to all zeros
•  For each feature point (x,y)

in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1

 end
end

•  Find the value(s) of (θ, ρ) where H(θ, ρ) is a
local maximum
•  The detected line in the image is given by

 ρ = x cos θ + y sin θ

ρ

θ

Source: S. Lazebnik

features votes

Basic illustration

Hough transform demo

Source: S. Lazebnik

Square Circle

Other shapes
Source: S. Lazebnik

Several lines
Source: S. Lazebnik

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

Source: S. Lazebnik

features votes

Effect of noise
Source: S. Lazebnik

features votes

Effect of noise

Peak gets fuzzy and hard to locate

Source: S. Lazebnik

Effect of noise
•  Number of votes for a line of 20 points with

increasing noise:

Source: S. Lazebnik

Random points

Uniform noise can lead to spurious peaks in the array
features votes

Source: S. Lazebnik

Random points
•  As the level of uniform noise increases, the

maximum number of votes increases too:

Source: S. Lazebnik

Dealing with noise
•  Choose a good grid / discretization

•  Too coarse: large votes obtained when too many different
lines correspond to a single bucket

•  Too fine: miss lines because some points that are not
exactly collinear cast votes for different buckets

•  Increment neighboring bins (smoothing in
accumulator array)

•  Try to get rid of irrelevant features
•  E.g., take only edge points with significant gradient

magnitude

Source: S. Lazebnik

Incorporating image gradients
•  Recall: when we detect an

edge point, we also know its
gradient direction

•  But this means that the line
is uniquely determined!

•  Modified Hough transform:

 For each edge point (x,y)
 θ = gradient orientation at (x,y)
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1

end

Source: S. Lazebnik

Hough transform for circles
•  How many dimensions will the parameter

space have?
•  Given an unoriented edge point, what are all

possible bins that it can vote for?
•  What about an oriented edge point?

Source: S. Lazebnik

Hough transform for circles

),(),(yxIryx ∇+

x

y

(x,y)
x

y

r

),(),(yxIryx ∇−

image space Hough parameter space

Source: S. Lazebnik

Hough transform for circles
•  Conceptually equivalent procedure: for each

(x,y,r), draw the corresponding circle in the
image and compute its “support”

x

y

r

Is this more or less efficient than voting with features?

Source: S. Lazebnik

Review: Hough transform
•  Hough transform for lines
•  Hough transform for circles
•  Hough transform pros and cons

Source: S. Lazebnik

Hough transform: Pros and cons
•  Pros

•  Can deal with non-locality and occlusion
•  Can detect multiple instances of a model
•  Some robustness to noise: noise points unlikely to contribute

consistently to any single bin

•  Cons
•  Complexity of search time increases exponentially with the

number of model parameters
•  Non-target shapes can produce spurious peaks in parameter

space
•  It’s hard to pick a good grid size

Source: S. Lazebnik

