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Lecture	4:	Model	estimation	(fitting)	
•  Least-squares	
•  Robust	fitting	
•  RANSAC	
•  Hough	transform	

These	topics	are	covered	in	Szeliski’s	book	briefly,	but	more	
thoroughly	in	Chapter	17	of	Forsyth	&	Ponce:	
http://courses.cs.washington.edu/courses/cse455/02wi/
readings/book-7-revised-a-indx.pdf	
	
Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	
Kristen	Grauman,	David	Forsyth,	Marc	Pollefeys,	and	others	(detailed	
credits	on	individual	slides)	

	
	



Relevant	reading	

•  These	topics	are	covered	in	Szeliski’s	book	briefly,	but	
more	thoroughly	in	the	following	books:	

–  Chapter	17	of	Forsyth	&	Ponce:	
http://cmuems.com/excap/readings/forsyth-ponce-computer-
vision-a-modern-approach.pdf	

–  Chapter	4	of	Hartley	&	Zisserman:	
http://cvrs.whu.edu.cn/downloads/ebooks/
Multiple%20View%20Geometry%20in%20Computer%20Vision%2
0(Second%20Edition).pdf	
	

	
	

	



Fitting 

•  We’ve learned how to 
detect edges, corners, 
blobs. Now what? 

•  We would like to form a 
higher-level, more 
compact representation of 
the features in the image 
by grouping multiple 
features according to a 
simple model 

Source: S. Lazebnik 



Source: K. Grauman 

Fitting 
•  Choose a parametric model to represent a set 

of features 

simple model: lines simple model: circles 

complicated model: car 



Fitting: Issues 

•  Noise in the measured feature locations 
•  Extraneous data: clutter (outliers), multiple lines 
•  Missing data: occlusions 

Case study: Line detection 

Source: S. Lazebnik 



Fitting: Overview 
•  If we know which points belong to the line, 

how do we find the “optimal” line parameters? 
•  Least squares 

 

•  What if there are outliers? 
•  Robust fitting, RANSAC 

 

•  What if there are many lines? 
•  Voting methods: RANSAC, Hough transform 

 

•  What if we’re not even sure it’s a line? 
•  Model selection (not covered) 

Source: S. Lazebnik 



Least squares line fitting 
Data: (x1, y1), …, (xn, yn) 
Line equation: yi = m xi + b 
Find (m, b) to minimize  
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Source: S. Lazebnik 



Least squares line fitting 
Data: (x1, y1), …, (xn, yn) 
Line equation: yi = m xi + b 
Find (m, b) to minimize  
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Source: S. Lazebnik 



Problem with “vertical” least squares 
•  Not rotation-invariant 
•  Fails completely for vertical lines 

Source: S. Lazebnik 



Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 
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ax+by=d 
Unit normal: 

N=(a, b) 

Source: S. Lazebnik 



Total least squares 
Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d| 
Find (a, b, d) to minimize the sum of 
squared perpendicular distances ∑ =
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Total least squares 
Distance between point (xi, yi) and 
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU 
associated with the smallest eigenvalue (least squares solution  
to homogeneous linear system UN = 0) 

Source: S. Lazebnik 



Least squares: Robustness to noise 
Least squares fit to the red points: 

Source: S. Lazebnik 



Least squares: Robustness to noise 
Least squares fit with an outlier: 

Problem: squared error heavily penalizes outliers 

Source: S. Lazebnik 



Robust estimators 
•  General approach: find model parameters θ that minimize 

 
                                   
 
ri (xi, θ) – residual of ith point w.r.t. model parameters θ 
ρ – robust function with scale parameter σ   

( )( )σθρ ;,iii xr∑

The robust function 
ρ behaves like 
squared distance for 
small values of the 
residual u but 
saturates for larger 
values of u 

Source: S. Lazebnik 



Choosing the scale: Just right 

The effect of the outlier is minimized 

Source: S. Lazebnik 



The error value is almost the same for every 
point and the fit is very poor 

Choosing the scale: Too small 
Source: S. Lazebnik 



Choosing the scale: Too large 

Behaves much the same as least squares 

Source: S. Lazebnik 



Robust estimation: Details 
•  Robust fitting is a nonlinear optimization 

problem that must be solved iteratively 
•  Least squares solution can be used for 

initialization 
•  Scale of robust function should be chosen 

adaptively based on median residual  

Source: S. Lazebnik 



RANSAC 
•  Robust fitting can deal with a few outliers – 

what if we have very many? 
•  Random sample consensus (RANSAC):  

Very general framework for model fitting in 
the presence of outliers 

•  Outline 
•  Choose a small subset of points uniformly at random 
•  Fit a model to that subset 
•  Find all remaining points that are “close” to the model and 

reject the rest as outliers 
•  Do this many times and choose the best model 

M. A. Fischler, R. C. Bolles. 
Random Sample Consensus: A Paradigm for Model Fitting with Applications to 
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981.  

Source: S. Lazebnik 



RANSAC for line fitting example 

Source: R. Raguram 



RANSAC for line fitting example 

Least-squares	fit	

Source: R. Raguram 



RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

Source: R. Raguram 



RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	
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RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

Source: R. Raguram 



RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	
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RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	
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RANSAC for line fitting example 
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RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Uncontaminated	sample	

Source: R. Raguram 



RANSAC for line fitting example 

1.  Randomly	select	
minimal	subset	
of	points	

2.  Hypothesize	a	
model	

3.  Compute	error	
function	

4.  Select	points	
consistent	with	
model	

5.  Repeat	
hypothesize-and-
verify	loop	

Source: R. Raguram 

Source: S. Lazebnik 



RANSAC for line fitting 
Repeat N times: 
•  Draw s points uniformly at random 
•  Fit line to these s points 
•  Find inliers to this line among the remaining 

points (i.e., points whose distance from the 
line is less than t) 

•  If there are d or more inliers, accept the line 
and refit using all inliers 

Source: S. Lazebnik 



Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

Source: M. Pollefeys 



Choosing the parameters 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 

Source: M. Pollefeys 

•  Initial number of points s 
•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 



Choosing the parameters 
•  Initial number of points s 

•  Typically minimum number needed to fit the model 

•  Distance threshold t 
•  Choose t so probability for inlier is p (e.g. 0.95)  
•  Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

•  Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

•  Consensus set size d 
•  Should match expected inlier ratio 

Source: M. Pollefeys 



Adaptively determining the number of samples 

•  Outlier ratio e is often unknown a priori, so 
pick worst case, e.g. 50%, and adapt if more 
inliers are found, e.g. 80% would yield e=0.2  

•  Adaptive procedure: 
•  N=∞, sample_count =0 
•  While N >sample_count 

– Choose a sample and count the number of inliers 
–  If inlier ratio is highest of any found so far, set  

e = 1 – (number of inliers)/(total number of points) 
– Recompute N from e: 

 
 
 

–  Increment the sample_count by 1 

( ) ( )( )sepN −−−= 11log/1log

Source: M. Pollefeys 



RANSAC pros and cons 
•  Pros 

•  Simple and general 
•  Applicable to many different problems 
•  Often works well in practice 

•  Cons 
•  Lots of parameters to tune 
•  Doesn’t work well for low inlier ratios (too many iterations,  

or can fail completely) 
•  Can’t always get a good initialization  

of the model based on the minimum  
number of samples 

Source: S. Lazebnik 



Fitting: Review 
•  Least squares 
•  Robust fitting 
•  RANSAC 

Source: S. Lazebnik 



Fitting: Review 
ü  If we know which points belong to the line, 

how do we find the “optimal” line 
parameters? 
ü  Least squares 

 

ü  What if there are outliers? 
ü Robust fitting, RANSAC 

 

•  What if there are many lines? 
•  Voting methods: RANSAC, Hough transform 

 

Source: S. Lazebnik 



Fitting: The Hough transform 
Source: S. Lazebnik 



Voting schemes 
•  Let each feature vote for all the models that 

are compatible with it 
•  Hopefully the noise features will not vote 

consistently for any single model 
•  Missing data doesn’t matter as long as there 

are enough features remaining to agree on a 
good model 

Source: S. Lazebnik 



Hough transform 
•  An early type of voting scheme 
•  General outline:  

•  Discretize parameter space into bins 
•  For each feature point in the image, put a vote in every bin in 

the parameter space that could have generated this point 
•  Find bins that have the most votes 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 
Int. Conf. High Energy Accelerators and Instrumentation, 1959  

Image space Hough parameter space 

Source: S. Lazebnik 



Parameter space representation 
•  A line in the image corresponds to a point in 

Hough space 

Image space Hough parameter space 

Source: S. Seitz 

Source: S. Lazebnik 



Parameter space representation 
•  What does a point (x0, y0) in the image space 

map to in the Hough space? 

Image space Hough parameter space 

Source: S. Lazebnik 



Parameter space representation 
•  What does a point (x0, y0) in the image space 

map to in the Hough space? 
•  Answer: the solutions of b = –x0m + y0 
•  This is a line in Hough space 

Image space Hough parameter space 

Source: S. Lazebnik 



Parameter space representation 

•  Where is the line that contains both (x0, y0) and 
(x1, y1)? 

Image space Hough parameter space 

(x0, y0) 

(x1, y1) 

b = –x1m + y1 

Source: S. Lazebnik 



Parameter space representation 

•  Where is the line that contains both (x0, y0) and 
(x1, y1)? 
•  It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1  

Image space Hough parameter space 

(x0, y0) 

(x1, y1) 

b = –x1m + y1 

Source: S. Lazebnik 



•  Problems with the (m,b) space: 
•  Unbounded parameter domains 
•  Vertical lines require infinite m 

Parameter space representation 
Source: S. Lazebnik 



•  Problems with the (m,b) space: 
•  Unbounded parameter domains 
•  Vertical lines require infinite m 

•  Alternative: polar representation 

Parameter space representation 

ρθθ =  +  sincos yx

Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space   

Source: S. Lazebnik 



Algorithm outline 
•  Initialize accumulator H  

to all zeros 
•  For each feature point (x,y)  

in the image 
 For θ = 0 to 180 
     ρ = x cos θ + y sin θ 
     H(θ, ρ) = H(θ, ρ) + 1 

    end 
end 

•  Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum 
•  The detected line in the image is given by  

 ρ = x cos θ + y sin θ 

ρ 

θ 

Source: S. Lazebnik 



features votes 

Basic illustration 

Hough transform demo 

Source: S. Lazebnik 



Square  Circle  

Other shapes 
Source: S. Lazebnik 



Several lines 
Source: S. Lazebnik 



A more complicated image 

http://ostatic.com/files/images/ss_hough.jpg 

Source: S. Lazebnik 



features votes 

Effect of noise 
Source: S. Lazebnik 



features votes 

Effect of noise 

Peak gets fuzzy and hard to locate 

Source: S. Lazebnik 



Effect of noise 
•  Number of votes for a line of 20 points with 

increasing noise: 

Source: S. Lazebnik 



Random points 

Uniform noise can lead to spurious peaks in the array 
features votes 

Source: S. Lazebnik 



Random points 
•  As the level of uniform noise increases, the 

maximum number of votes increases too: 

Source: S. Lazebnik 



Dealing with noise 
•  Choose a good grid / discretization 

•  Too coarse: large votes obtained when too many different 
lines correspond to a single bucket 

•  Too fine: miss lines because some points that are not 
exactly collinear cast votes for different buckets 

•  Increment neighboring bins (smoothing in 
accumulator array) 

•  Try to get rid of irrelevant features  
•  E.g., take only edge points with significant gradient 

magnitude 

Source: S. Lazebnik 



Incorporating image gradients 
•  Recall: when we detect an  

edge point, we also know its  
gradient direction 

•  But this means that the line  
is uniquely determined! 
 

•  Modified Hough transform: 
 

    For each edge point (x,y)  
 θ = gradient orientation at (x,y) 
 ρ = x cos θ + y sin θ 
 H(θ, ρ) = H(θ, ρ) + 1 

end 

Source: S. Lazebnik 



Hough transform for circles 
•  How many dimensions will the parameter 

space have? 
•  Given an unoriented edge point, what are all 

possible bins that it can vote for? 
•  What about an oriented edge point? 

Source: S. Lazebnik 



Hough transform for circles  
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image space Hough parameter space 

Source: S. Lazebnik 



Hough transform for circles 
•  Conceptually equivalent procedure: for each 

(x,y,r), draw the corresponding circle in the 
image and compute its “support” 

x 

y 

r 

Is this more or less efficient than voting with features? 

Source: S. Lazebnik 



Review: Hough transform 
•  Hough transform for lines 
•  Hough transform for circles 
•  Hough transform pros and cons 

Source: S. Lazebnik 



Hough transform: Pros and cons 
•  Pros 

•  Can deal with non-locality and occlusion 
•  Can detect multiple instances of a model 
•  Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin 

•  Cons 
•  Complexity of search time increases exponentially with the 

number of model parameters 
•  Non-target shapes can produce spurious peaks in parameter 

space 
•  It’s hard to pick a good grid size 

 

Source: S. Lazebnik 


