
Computer	Vision	

CS-E4850,	5	study	credits	
Lecturer:	Juho	Kannala	

	

Lecture	5:	Image	alignment	and	
object	instance	recognition	

•  Given	two	images	of	a	planar	scene	(or	from	a	rotating	camera),	
find	the	parameters	of	a	global	geometric	transformation	that	
accounts	for	most	true	point	correspondences	between	the	images	

•  Given	a	query	image	and	a	database	of	object	images,	detect	
whether	the	objects	are	visible	in	the	query	image	

•  Reading:		
–  Szeliski’s	book,	Sections	8.1.1	-	8.1.4	in	2nd	edition	
–  Chapter	4	in	Hartley	&	Zisserman	
–  Lowe’s	SIFT	paper:	http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	Kristen	
Grauman,	and	others	(detailed	credits	on	individual	slides)	

	
	

Image alignment

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

Source: S. Lazebnik

Alignment applications
•  A look into the past

Source: S. Lazebnik

Alignment applications

Panorama stitching

Source: S. Lazebnik

Alignment applications

Recognition
of object
instances

Source: S. Lazebnik

Alignment

Alignment: find parameters of model that maps one set of

points to another

Typically want to solve for a global transformation that

accounts for most true correspondences

Difficulties

•  Noise (typically 1-3 pixels)
•  Outliers (often 30-50%)
•  Many-to-one matches or multiple objects

Source: S. Lazebnik

Alignment challenges

Small degree of overlap

Occlusion,
clutter

Intensity changes

Source: S. Lazebnik

Feature-based alignment
•  Search sets of feature matches that agree in terms of:

a)  Local appearance
b)  Geometric configuration

?

Source: S. Lazebnik

Feature-based alignment: Overview
•  Alignment as fitting

•  Affine transformations
•  Homographies

•  Robust alignment
•  Descriptor-based feature matching
•  RANSAC

Source: S. Lazebnik

Alignment as fitting
•  Previous lectures: fitting a model to features in one image

∑
i

i Mx),(residual
Find model M that minimizes

M

xi

Source: S. Lazebnik

Alignment as fitting
•  Previous lectures: fitting a model to features in one image

•  Alignment: fitting a model to a transformation between
pairs of features (matches) in two images

∑
i

i Mx),(residual

∑ ʹ
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T
that minimizes

M

xi

T

xi
xi

'

Source: S. Lazebnik

2D transformation models

•  Similarity
(translation,
scale, rotation)

•  Affine

•  Projective
(homography)

Source: S. Lazebnik

Let’s start with affine transformations
•  Simple fitting procedure (linear least squares)
•  Approximates viewpoint changes for roughly planar

objects and roughly orthographic cameras
•  Can be used to initialize fitting for more complex

models

Source: S. Lazebnik

Fitting an affine transformation
•  Assume we know the correspondences, how do we

get the transformation?

),(ii yx ʹʹ
),(ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ʹ

ʹ

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

tMxx +=ʹ ii

Want to find M, t to minimize

∑
=

−−ʹ
n

i
ii

1

2|||| tMxx

Source: S. Lazebnik

Fitting an affine transformation
•  Assume we know the correspondences, how do we

get the transformation?

),(ii yx ʹʹ
),(ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ʹ

ʹ

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ

ʹ
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

!

!

!

!

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Source: S. Lazebnik

Fitting an affine transformation

•  Linear system with six unknowns
•  Each match gives us two linearly independent

equations: need at least three to solve for the
transformation parameters

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ

ʹ
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

!

!

!

!

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Source: S. Lazebnik

Fitting a plane projective transformation
•  Homography: plane projective transformation

(transformation taking a quad to another arbitrary
quad)

Source: S. Lazebnik

Homography
•  The transformation between two views of a planar

surface

•  The transformation between images from two
cameras that share the same center

Source: S. Lazebnik

Application: Panorama stitching

Source: Hartley & Zisserman

Fitting a homography
•  Recall: homogeneous coordinates

Converting to homogeneous
image coordinates

Converting from homogeneous
image coordinates

Source: S. Lazebnik

Fitting a homography
•  Recall: homogeneous coordinates

•  Equation for homography:

Converting to homogeneous
image coordinates

Converting from homogeneous
image coordinates

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ʹ

ʹ

11 333231

232221

131211

y
x

hhh
hhh
hhh

y
x

λ

Source: S. Lazebnik

Fitting a homography
•  Equation for homography:

ii xHx =ʹλ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ʹ

ʹ

11 333231

232221

131211

i

i

i

i

y
x

hhh
hhh
hhh

y
x

λ
0=×ʹ ii xHx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ʹ−ʹ

ʹ−

−ʹ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ʹ

ʹ

i
T

ii
T

i

i
T

ii
T

i
T

i
T

i

i
T

i
T

i
T

i

i

yx
x

y
y
x

xhxh
xhxh
xhxh

xh
xh
xh

3

2

1

12

31

23

1

0
0

0
0

3

2

1

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ʹʹ−

ʹ−

ʹ−

h
h
h

xx
xx
xx

TT
ii

T
ii

T
ii

TT
i

T
ii

T
i

T

xy
x
y

3 equations,
only 2 linearly
independent

Source: S. Lazebnik

Fitting a homography: DLT algorithm

•  H has 8 degrees of freedom (9 parameters, but scale is
arbitrary)

•  One match gives us two linearly independent equations
•  Homogeneous least squares: find h minimizing ||Ah||2

•  Eigenvector of ATA corresponding to smallest eigenvalue
•  Four matches needed for a minimal solution

•  For more info, see Sec. 4.1 in (Hartley & Zisserman)

0

0
0

0
0

3

2

1111

111

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ʹ−

ʹ−

ʹ−

ʹ−

h
h
h

xx
xx

xx
xx

T
nn

TT
n

T
nn

T
n

T

TTT

TTT

x
y

x
y

!!! 0=hA

Source: S. Lazebnik

Robust feature-based alignment
•  So far, we’ve assumed that we are given a set of

“ground-truth” correspondences between the two
images we want to align

•  What if we don’t know the correspondences?

),(ii yx ʹʹ
),(ii yx

Source: S. Lazebnik

Robust feature-based alignment
•  So far, we’ve assumed that we are given a set of

“ground-truth” correspondences between the two
images we want to align

•  What if we don’t know the correspondences?

?

Source: S. Lazebnik

Robust feature-based alignment
Source: S. Lazebnik

Robust feature-based alignment

•  Extract features

Source: S. Lazebnik

Robust feature-based alignment

•  Extract features
•  Compute putative matches

Source: S. Lazebnik

Robust feature-based alignment

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T

Source: S. Lazebnik

Robust feature-based alignment

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T
•  Verify transformation (search for other matches consistent

with T)

Source: S. Lazebnik

Robust feature-based alignment

•  Extract features
•  Compute putative matches
•  Loop:

•  Hypothesize transformation T
•  Verify transformation (search for other matches consistent

with T)

Source: S. Lazebnik

Generating putative correspondences

?

Source: S. Lazebnik

Generating putative correspondences

•  Need to compare feature descriptors of local patches
surrounding interest points

() () =

?

feature
descriptor

feature
descriptor

?

Source: S. Lazebnik

Feature descriptors
•  Recall: feature detection and description

Source: S. Lazebnik

•  Simplest descriptor: vector of raw intensity values
•  How to compare two such vectors?

•  Sum of squared differences (SSD)

–  Not invariant to intensity change

•  Normalized correlation

–  Invariant to affine intensity change

Feature descriptors

()∑ −=
i

ii vu 2)SSD(vu,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

−

−
⋅

−

−
=

∑∑

∑

j
j

j
j

i ii

vu

vu

22)()(

))((
||||
)(

||||
)()(

vu

vu
vv
vv

uu
uuvu,ρ

Source: S. Lazebnik

Disadvantage of intensity vectors as descriptors
•  Small deformations can affect the matching

score a lot

Source: S. Lazebnik

•  Descriptor computation:
•  Divide patch into 4x4 sub-patches
•  Compute histogram of gradient orientations (8 reference

angles) inside each sub-patch
•  Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

Source: S. Lazebnik

•  Descriptor computation:
•  Divide patch into 4x4 sub-patches
•  Compute histogram of gradient orientations (8 reference

angles) inside each sub-patch
•  Resulting descriptor: 4x4x8 = 128 dimensions

•  Advantage over raw vectors of pixel values
•  Gradients less sensitive to illumination change
•  Pooling of gradients over the sub-patches achieves

robustness to small shifts, but still preserves some spatial
information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

Source: S. Lazebnik

Feature matching

?

•  Generating putative matches: for each patch in one
image, find a short list of patches in the other image
that could match it based solely on appearance

Source: S. Lazebnik

Problem: Ambiguous putative matches

Source: Y. Furukawa

Source: S. Lazebnik

Rejection of unreliable matches
•  How can we tell which putative matches are more reliable?
•  Heuristic: compare distance of nearest neighbor to that of

second nearest neighbor
•  Ratio of closest distance to second-closest distance will be high

for features that are not distinctive

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

Threshold of 0.8
provides good
separation

Source: S. Lazebnik

RANSAC
•  The set of putative matches contains a very high

percentage of outliers

RANSAC loop:
1.  Randomly select a seed group of matches
2.  Compute transformation from seed group
3.  Find inliers to this transformation
4.  If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of inliers

Source: S. Lazebnik

RANSAC example: Translation

Putative matches

Source: S. Lazebnik

RANSAC example: Translation

Select one match, count inliers

Source: S. Lazebnik

RANSAC example: Translation

Select translation with the most inliers

Source: S. Lazebnik

Object Instance Recognition

Slide credit: David Lowe

Object Instance Recognition
1.  Match keypoints to object

model

2.  Solve for affine
transformation parameters

3.  Score by inliers and choose
solutions with score above
threshold

B1
B2

B3 A1

A2
A3

Affine
Parameters

Choose hypothesis with max
score above threshold

Inliers

Matched
keypoints

Source: D. Hoeim

Overview of Keypoint Matching

K. Grauman, B. Leibe

N
 p

ix
el

s

N pixels

Af

e.g. color

Bf

e.g. color

B1
B2

B3 A1

A2 A3

Tffd BA <),(

1. Find a set of
 distinctive key-
 points

3. Extract and
 normalize the
 region content

2. Define a region
 around each
 keypoint

4. Compute a local
 descriptor from the
 normalized region

5. Match local
 descriptors

Source: D. Hoeim

Finding the objects (overview)

1.  Match interest points from input image to database image

2.  Matched points vote for rough position/orientation/scale of
object

3.  Find position/orientation/scales that have at least three
votes

4.  Compute affine registration and matches using iterative
least squares with outlier check

5.  Report object if there are at least T matched points

Input
Image Stored

Image

Source: D. Hoeim

Matching Keypoints

Want to match keypoints between:

1.  Query image
2.  Stored image containing the object

Given descriptor x0, find two nearest neighbors x1, x2 with
distances d1, d2

x1 matches x0 if d1/d2 < 0.8

•  This gets rid of 90% false matches, 5% of true matches in
Lowe’s study

Source: D. Hoeim

Affine Object Model
Accounts for 3D rotation of a surface under orthographic

projection

Source: D. Hoeim

Affine Object Model

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ʹ

ʹ

1
y
x

fed
cba

y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ

ʹ

ʹ

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

!!

2

1

1

22

11

11

.
0001
1000
0001

x
y
x

f
e
d
c
b
a

yx
yx

yx

Source: D. Hoeim

Finding the objects (in detail)

1.  Match interest points from input image to database image
2.  Get location/scale/orientation using Hough voting

•  In training, each point has known position/scale/orientation wrt
whole object

•  Matched points vote for the position, scale, and orientation of the
entire object

•  Bins for x, y, scale, orientation
–  Wide bins (0.25 object length in position, 2x scale, 30 degrees

orientation)
–  Vote for two closest bin centers in each direction (16 votes

total)
3.  Geometric verification

•  For each bin with at least 3 keypoints
•  Iterate between least squares fit and checking for inliers and

outliers
4.  Report object if > T inliers (T is typically 3, can be computed to match

some probabilistic threshold)

Source: D. Hoeim

Examples of recognized objects

Slide credit: David Lowe

Location Recognition

Slide credit: David Lowe

Training

[Lowe04]

Key concepts

Alignment as robust fitting

•  Affine transformations
•  Homographies
•  Descriptor-based feature

matching
•  RANSAC

Object instance recognition

•  Find keypoints, compute
descriptors

•  Match descriptors
•  Vote for / fit affine parameters
•  Return object if # inliers > T

Adapted from D. Hoeim

