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Lecture	5:	Image	alignment	and	
object	instance	recognition	

•  Given	two	images	of	a	planar	scene	(or	from	a	rotating	camera),	
find	the	parameters	of	a	global	geometric	transformation	that	
accounts	for	most	true	point	correspondences	between	the	images	

•  Given	a	query	image	and	a	database	of	object	images,	detect	
whether	the	objects	are	visible	in	the	query	image	

•  Reading:		
–  Szeliski’s	book,	Sections	8.1.1	-	8.1.4	in	2nd	edition	
–  Chapter	4	in	Hartley	&	Zisserman	
–  Lowe’s	SIFT	paper:	http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	Kristen	
Grauman,	and	others	(detailed	credits	on	individual	slides)	

	
	



Image alignment 

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/ 

Source: S. Lazebnik 



Alignment applications 
•  A look into the past 

Source: S. Lazebnik 



Alignment applications 

Panorama stitching 

Source: S. Lazebnik 



Alignment applications 

Recognition 
of object 
instances 

Source: S. Lazebnik 



Alignment 
 
Alignment: find parameters of model that maps one set of 

points to another 
 
Typically want to solve for a global transformation that 

accounts for most true correspondences 
 
Difficulties 

•  Noise (typically 1-3 pixels) 
•  Outliers (often 30-50%)  
•  Many-to-one matches or multiple objects 

 

Source: S. Lazebnik 



Alignment challenges 

Small degree of overlap 

Occlusion, 
clutter 

Intensity changes 

Source: S. Lazebnik 



Feature-based alignment 
•  Search sets of feature matches that agree in terms of: 

a)  Local appearance 
b)  Geometric configuration 

? 

Source: S. Lazebnik 



Feature-based alignment: Overview 
•  Alignment as fitting 

•  Affine transformations 
•  Homographies 

•  Robust alignment  
•  Descriptor-based feature matching 
•  RANSAC 

Source: S. Lazebnik 



Alignment as fitting 
•  Previous lectures: fitting a model to features in one image 
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Alignment as fitting 
•  Previous lectures: fitting a model to features in one image 

 
 
 
 
 
 

•  Alignment: fitting a model to a transformation between 
pairs of features (matches) in two images 
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2D transformation models 

•  Similarity 
(translation,  
scale, rotation) 
 
 

•  Affine 
 
 

•  Projective 
(homography) 
 

Source: S. Lazebnik 



Let’s start with affine transformations 
•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex 

models 

Source: S. Lazebnik 



Fitting an affine transformation 
•  Assume we know the correspondences, how do we 

get the transformation? 
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Fitting an affine transformation 
•  Assume we know the correspondences, how do we 

get the transformation? 
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Fitting an affine transformation 

•  Linear system with six unknowns 
•  Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 
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Fitting a plane projective transformation 
•  Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad) 

Source: S. Lazebnik 



Homography 
•  The transformation between two views of a planar 

surface 
 
 
 
 
 
 

•  The transformation between images from two 
cameras that share the same center 

Source: S. Lazebnik 



Application: Panorama stitching 

Source: Hartley & Zisserman 



Fitting a homography 
•  Recall: homogeneous coordinates 

Converting to homogeneous 
image coordinates 

Converting from homogeneous 
image coordinates 

Source: S. Lazebnik 



Fitting a homography 
•  Recall: homogeneous coordinates 

 
 
 
 
 
 
 

•  Equation for homography: 

Converting to homogeneous 
image coordinates 

Converting from homogeneous 
image coordinates 
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Fitting a homography 
•  Equation for homography: 

ii xHx =ʹλ
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Fitting a homography: DLT algorithm 

•  H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary) 

•  One match gives us two linearly independent equations 
•  Homogeneous least squares: find h minimizing ||Ah||2 

•  Eigenvector of ATA corresponding to smallest eigenvalue 
•  Four matches needed for a minimal solution 

•  For more info, see Sec. 4.1 in (Hartley & Zisserman) 
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Robust feature-based alignment 
•  So far, we’ve assumed that we are given a set of 

“ground-truth” correspondences between the two 
images we want to align 

•  What if we don’t know the correspondences? 
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Source: S. Lazebnik 



Robust feature-based alignment 
•  So far, we’ve assumed that we are given a set of 

“ground-truth” correspondences between the two 
images we want to align 

•  What if we don’t know the correspondences? 

? 

Source: S. Lazebnik 



Robust feature-based alignment 
Source: S. Lazebnik 



Robust feature-based alignment 

•  Extract features 

Source: S. Lazebnik 



Robust feature-based alignment 

•  Extract features 
•  Compute putative matches 

Source: S. Lazebnik 



Robust feature-based alignment 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 

Source: S. Lazebnik 



Robust feature-based alignment 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 
•  Verify transformation (search for other matches consistent 

with T) 

Source: S. Lazebnik 



Robust feature-based alignment 

•  Extract features 
•  Compute putative matches 
•  Loop: 

•  Hypothesize transformation T 
•  Verify transformation (search for other matches consistent 

with T) 

Source: S. Lazebnik 



Generating putative correspondences 

? 

Source: S. Lazebnik 



Generating putative correspondences 

•  Need to compare feature descriptors of local patches 
surrounding interest points 
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Source: S. Lazebnik 



Feature descriptors 
•  Recall: feature detection and description 

Source: S. Lazebnik 



•  Simplest descriptor: vector of raw intensity values 
•  How to compare two such vectors? 

•  Sum of squared differences (SSD) 
 
 
 

–  Not invariant to intensity change 
 

•  Normalized correlation 
 
 
 
 
 
 

–  Invariant to affine intensity change 

Feature descriptors 
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Disadvantage of intensity vectors as descriptors 
•  Small deformations can affect the matching 

score a lot 
 
 
 
 
 
 
 
 

Source: S. Lazebnik 



•  Descriptor computation: 
•  Divide patch into 4x4 sub-patches 
•  Compute histogram of gradient orientations (8 reference 

angles) inside each sub-patch 
•  Resulting descriptor: 4x4x8 = 128 dimensions 

Feature descriptors: SIFT 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004.  

Source: S. Lazebnik 



•  Descriptor computation: 
•  Divide patch into 4x4 sub-patches 
•  Compute histogram of gradient orientations (8 reference 

angles) inside each sub-patch 
•  Resulting descriptor: 4x4x8 = 128 dimensions 

 

•  Advantage over raw vectors of pixel values 
•  Gradients less sensitive to illumination change 
•  Pooling of gradients over the sub-patches achieves 

robustness to small shifts, but still preserves some spatial 
information 

Feature descriptors: SIFT 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004.  

Source: S. Lazebnik 



Feature matching 

? 

•  Generating putative matches: for each patch in one 
image, find a short list of patches in the other image 
that could match it based solely on appearance 

Source: S. Lazebnik 



Problem: Ambiguous putative matches 

Source: Y. Furukawa 

Source: S. Lazebnik 



Rejection of unreliable matches 
•  How can we tell which putative matches are more reliable? 
•  Heuristic: compare distance of nearest neighbor to that of 

second nearest neighbor 
•  Ratio of closest distance to second-closest distance will be high  

for features that are not distinctive 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004.  

Threshold of 0.8 
provides good 
separation 

Source: S. Lazebnik 



RANSAC 
•  The set of putative matches contains a very high 

percentage of outliers 
 

RANSAC loop: 
1.  Randomly select a seed group of matches 
2.  Compute transformation from seed group 
3.  Find inliers to this transformation  
4.  If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the 
inliers 
 

Keep the transformation with the largest number of inliers 

Source: S. Lazebnik 



RANSAC example: Translation 

Putative matches 

Source: S. Lazebnik 



RANSAC example: Translation 

Select one match, count inliers 

Source: S. Lazebnik 



RANSAC example: Translation 

Select translation with the most inliers 

Source: S. Lazebnik 



Object Instance Recognition 

Slide credit: David Lowe 



Object Instance Recognition 
1.  Match keypoints to object 

model 

2.  Solve for affine 
transformation parameters 

3.  Score by inliers and choose 
solutions with score above 
threshold 

B1 
B2 

B3 A1 

A2 
A3 

Affine 
Parameters 

Choose hypothesis with max 
score above threshold 

# Inliers 

Matched 
keypoints 

Source: D. Hoeim 



Overview of Keypoint Matching 

K. Grauman, B. Leibe 
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Source: D. Hoeim 



Finding the objects (overview) 

1.  Match interest points from input image to database image 

2.  Matched points vote for rough position/orientation/scale of 
object 

3.  Find position/orientation/scales that have at least three 
votes 

4.  Compute affine registration and matches using iterative 
least squares with outlier check 

5.  Report object if there are at least T matched points 

Input 
Image Stored 

Image 

Source: D. Hoeim 



Matching Keypoints 
 
Want to match keypoints between: 

1.  Query image 
2.  Stored image containing the object 
 

Given descriptor x0, find two nearest neighbors x1, x2 with 
distances d1, d2  

 
x1 matches x0 if d1/d2 < 0.8 

•  This gets rid of 90% false matches, 5% of true matches in 
Lowe’s study 

Source: D. Hoeim 



Affine Object Model 
Accounts for 3D rotation of a surface under orthographic 

projection 
 
 

Source: D. Hoeim 



Affine Object Model  
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Finding the objects (in detail) 

1.  Match interest points from input image to database image 
2.  Get location/scale/orientation using Hough voting 

•  In training, each point has known position/scale/orientation wrt 
whole object 

•  Matched points vote for the position, scale, and orientation of the 
entire object 

•  Bins for x, y, scale, orientation 
–  Wide bins (0.25 object length in position, 2x scale, 30 degrees 

orientation) 
–  Vote for two closest bin centers in each direction (16 votes 

total) 
3.  Geometric verification 

•  For each bin with at least 3 keypoints 
•  Iterate between least squares fit and checking for inliers and 

outliers 
4.  Report object if > T inliers (T is typically 3, can be computed to match 

some probabilistic threshold) 

Source: D. Hoeim 



Examples of recognized objects 

Slide credit: David Lowe 



Location Recognition 

Slide credit: David Lowe 

Training 

[Lowe04] 



Key concepts 
 
Alignment as robust fitting 

•  Affine transformations 
•  Homographies 
•  Descriptor-based feature 

matching 
•  RANSAC 
 

 
Object instance recognition 

•  Find keypoints, compute 
descriptors 

•  Match descriptors 
•  Vote for / fit affine parameters 
•  Return object if # inliers > T 

 
Adapted from D. Hoeim 


