CS-E4850 Computer Vision

Exam 14th of December 2018, Lecturer: Juho Kannala

There are plenty of questions, answer as many as you can in the available time. The number of points awarded from different parts is shown in parenthesis in the end of each question. The maximum score from the whole exam is 42 points.

You need pen and paper, also calculator is allowed but should not be necessary.

1. Explain briefly the following concepts (e.g. what does the concept mean, what are its key properties, and how it is utilised in computer vision):
(a) Harris corner detector
(b) Scale invariant feature transform (SIFT)
(c) Kanade-Lucas-Tomasi (KLT) feature tracker
(d) Structure from motion
(e) Multi-view stereo
(f) Object detection by sliding windows and cascade classifiers
2. Model fitting using RANSAC algorithm
(a) Describe the main stages of the RANSAC algorithm in the general case. (2 p)
(b) In this context, why it is usually beneficial to sample minimal subsets of data points instead of using more data points? (Minimal subsets have the minimal number of data points required for fitting.)
(c) Mention at least two examples of models that can be fitted using RANSAC. Describe how the models are used in computer vision and what is the size of the minimal subset of data points required for fitting in each case.
(d) Describe how RANSAC can be used for panoramic image stitching. Why is RANSAC needed and what is the model fitted in this case?
3. Large-scale object instance recognition
(a) Describe the bag-of-visual-words image representation technique and its pros and cons for object instance recognition.
(b) Describe what is inverted index and how it can be used to improve efficiency of object instance recognition from large image databases?
(c) Explain the concept term frequency - inverse document frequency (tf-idf) weighting and its purpose.
(d) Explain what is the precision-recall curve (that is often used for evaluating image retrieval systems). Compute precision and recall in the following case: We search for car images from a database of 10000 images. It is known that there are 500 car images in the database. An automatic image retrieval system retrieves 300 car images and 50 other images from the database.

Figure 1: Top view of a stereo pair where two pinhole cameras are placed side by side.
4. Epipolar geometry and stereo
(a) Figure 1 presents a stereo system with two parallel pinhole cameras separated by a baseline b so that the centers of the cameras are $\mathbf{c}_{l}=(0,0,0)$ and $\mathbf{c}_{r}=$ $(b, 0,0)$. Both cameras have the same focal length f. The point P is located in front of the cameras and its disparity d is the distance between corresponding image points, i.e., $d=\left|x_{l}-x_{r}\right|$. Assume that $d=1 \mathrm{~cm}, b=6 \mathrm{~cm}$ and $f=1$ cm . Compute Z_{P}.
(b) Let's denote the camera projection matrices of two cameras by $\mathbf{P}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$ and $\mathbf{P}^{\prime}=\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]$, where \mathbf{R} is a rotation matrix and $\mathbf{t}=\left(t_{1}, t_{2}, t_{3}\right)^{\top}$ describes the translation between the cameras. Show that the epipolar constraint for corresponding image points \mathbf{x} and \mathbf{x}^{\prime} can be written in the form $\mathbf{x}^{\prime \top} \mathbf{E x}=0$, where matrix \mathbf{E} is the essential matrix $\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}$.
(c) In the configuration illustrated in Figure 1 the camera matrices are $\mathbf{P}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$ and $\mathbf{P}^{\prime}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]$, where \mathbf{I} is the identity matrix and $\mathbf{t}=(-6,0,0)^{\top}$. The point Q has coordinates $(3,0,3)$. Compute the image of Q on the image plane of the camera on the left and the corresponding epipolar line on the image plane of the camera on the right. (Hint: The epipolar line is computed using the essential matrix.)
5. Geometric 2D transformations
(a) Using homogeneous coordinates, write the matrix form of the following 2D transformations: translation, similarity (rotation+scaling+translation), affine and homography. How many degrees of freedom does each transformation have? How many point correspondences are needed to estimate each?
(b) A similarity transformation consists of rotation, scaling and translation and is defined using conventional Cartesian coordinates as follows:

$$
\mathbf{x}^{\prime}=s \mathbf{R} \mathbf{x}+\mathbf{t} \quad \Leftrightarrow \quad\binom{x^{\prime}}{y^{\prime}}=s\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{x}{y}+\binom{t_{x}}{t_{y}}
$$

Describe a procedure for solving the parameters s, θ, t_{x}, t_{y} of a similarity transformation from two point correspondences $\left\{\mathrm{x}_{1} \rightarrow \mathrm{x}_{1}^{\prime}\right\},\left\{\mathrm{x}_{2} \rightarrow \mathrm{x}_{2}^{\prime}\right\}$. Use the
procedure to compute the transformation from the following point correspondences: $\left\{\left(\frac{1}{2}, 0\right) \rightarrow(0,0)\right\},\left\{\left(0, \frac{1}{2}\right) \rightarrow(-1,-1)\right\}$.
(Hint: Drawing the point correspondences on a grid paper may help you to check your answer.)
6. Neural networks
(a) Explain how neural networks are typically used in image classification? What kind of neural networks are popular in this context and why?
(b) Explain the basic concepts of the backpropagation algorithm. (What it does? How it works? When it can be used? Why it may sometimes fail?)
(c) In Figure 1 below you see a very small neural network, which has one input unit, one hidden unit (logistic), and one output unit (linear). The nonlinear function σ in the logistic unit is defined by the formula $\sigma(z)=1 /\left(1+e^{-z}\right)$. Let's consider one training case. For that training case, the input value is 1 (as shown in the figure) and the target output value t is 1 . We are using the standard squared loss function: $E=(t-y)^{2} / 2$, where y is the output of the network. The values of the weights and biases are shown in the figure and they have been constructed in such a way that you don't need a calculator.
Answer the following questions:
i. What is the output of the hidden unit and the output unit, for this training case?
ii. What is the loss, for this training case?
iii. What is the derivative of the loss with respect to $w 2$, for this training case?
iv. What is the derivative of the loss with respect to w1, for this training case?

Figure 2: A small neural network with one hidden unit. The values for the weights and biases are given in the figure.

