CHEM-E4205: Crystallography Basics & Structural Characterization (5 cr)

The course deals with **crystal chemistry** concepts and structural **characterization** techniques of **inorganic materials** and covers also the basics of **crystallography**. The emphases are on the various diffraction and spectroscopic methods used for phase identification, **crystal structure** determination and studies of **chemical environment**.

Time Slots	Tuesday 12–14, Friday 10-12 & Friday 14–16	
Lectures	Lectures in Zoom; lecture slides and additional reference material (if needed) provided in MyCourses before the start of each lecture.	
Exercises	Last part of Friday hours (Zoom or Classroom D422): to explain the assignments & give some guiding. Exercise answers returned by next Monday 6 pm.	
Seminars	Given individually on an assigned topic	
Teachers:	Maarit Karppinen Eeva Rautama (Rietveld) Sami Vasala (Synchrotron & XAS & RIXS) Ramin Ghiyasi (XRR)	

SCHEDULE

		Date	Торіс
1.	Tue	14.09.	Lec-1: Introduction
2.	Fri	17.09.	Lec-2: Crystal Chemistry & Tolerance parameter
3.	Fri	17.09.	EXERCISE 1
4.	Tue	21.09.	Lec-3: Crystal Chemistry & BVS
5.	Fri	24.09.	Lec-4: Symmetry & Point Groups
6.	Fri	24.09.	EXERCISE 2
7.	Tue	28.10.	Lec-5: Crystallography & Space Groups
8.	Fri	01.10.	Lec-6: XRD & Reciprocal lattice
9.	Fri	01.10.	EXERCISE 3
10.	Tue	05.10.	Lec-7: ND & GI-XRD
11.	Fri	08.10.	Lec-8: Rietveld
12.	Fri	08.10	EXERCISE 4: Rietveld
13.	Tue	12.10.	Lec-9: Synchrotron radiation & XAS & RIXS
14.	Fri	15.10.	Lec-10: EXAFS & Mössbauer
15.	Fri	15.10.	EXERCISE 5
16.	Tue	19.10.	Seminars: XPS, FTIR, Raman, ED, HRTEM, SEM, AFM
17.	Fri	19.10.	Lec-11: XRR
18.	Fri	22.10.	EXERCISE 6: XRR

COURSE START: Tue 14.09. at 12.15 in Zoom

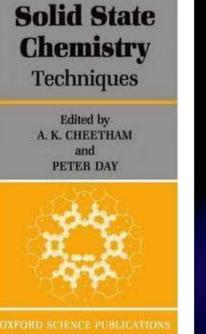
EXAM: Fri Oct. 29, 2021

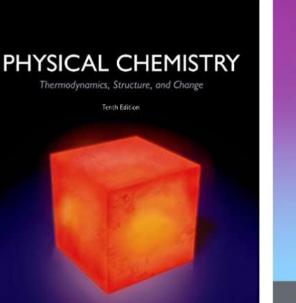
GRADING (max 100 points)

- \succ Exam: 0 44 points
- > Exercises: = 0 36 (= 6×6) points
- Seminar (mandatory): 10 20 points

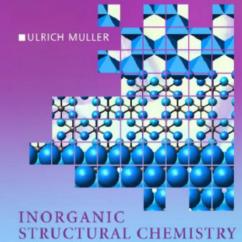
INSTRUCTIONS for SEMINAR PRESENTATION/REPORT

- Topics: IR, Raman, XPS, SEM, AFM, HRTEM, ED, EELS
- Seminar presentation is mandatory
- Given individually
- Evaluated in the scale: 10 ~ 20 points
- Presentation is given in English, and the slides will be put up in MyCourses afterwards
- Presentation: 25+5 minutes
- Rough content of the presentation/report:
 - principle of the technique
 - type of information gained
 - interpretation of the measured data
 - pros & cons
 - two to three research examples
 - (you will be given some relevant research papers for an example)


TEXT BOOKs & Background Knowledge


This course does not follow any specific text book; no text book fully covers the topics included; below are examples of text books which could be useful reference/background books for many of the course topics.

Although the following two courses are not mandatory prerequisites, it maybe difficult to follow this course without a similar basic background knowledge on inorganic (materials) chemistry and solid state chemistry:


CHEM-E4130: Chemistry of Elements (Maarit Karppinen) CHEM-E4155: Solid State Chemistry (Antti Karttunen)

<section-header><section-header><text><text>

Peter Atkins | Julio de Paula

WILEY

SECOND EDITION

WILEY

LEARNING OUTCOMES

After the course the student will be able to

- 1. use symmetry elements for the description of the symmetries of molecules and crystals
- 2. determine the point group for a molecule
- 3. read the space group symbols so as to understand the information provided by the symbol
- 4. draw unit cells once the space group, lattice parameters, and atomic coordinates are known
- 5. explain the diffraction phenomenon
- explain the steps in crystal structure determination and the principles of Rietveld refinement; evaluate the feasibility of a crystal structure model based on a bond valence sum (BVS) calculation
- 7. understand the interplay with structural features/chemical state
- 8. explain the principles of the most important structural characterization techniques and understand and critically evaluate the information revealed by the techniques for inorganic materials
- 9. select the most suitable technique(s) for each specific structure-related research problem

The course deals with structural characterization techniques of **inorganic materials** and covers also the basics of crystallography. The emphases are on the various diffraction and spectroscopic methods used for phase identification, **crystal structure** determination and studies of **chemical environment**.