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Course activities

Lectures
Reading
Exam (75% of final grade) — Oct. 28.

Laboratory Exercises (25%) — E. Hiltunen; Antti Koistinen
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- 14.9.21  Introduction/Fiber Ultrastructure  Maloney

2 16.9.21 Fiber Properties Maloney
21.9.21 Fiber Swelling Maloney

23.9.21  Hornification and Recycled Pulp  Maloney

28.9.21 Fiber and Paper strength E. Hiltunen

G 30.9.21  Mechanical Pulping E. Hiltunen
5.10.21 Pulp refining Maloney

EBN 7.10.21  Fiber and Paper physics Maloney
12 10.21  Pulp Reactivity S. Ceccherini

14 10.21 Case Study: Super Capacitor Josphat Phiri
Papers
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Introduction to fiber
structure

Thad Maloney
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Fiber — A slender and greatly
elongated solid substance.
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Types of fibers

* Natural
« QOrganic
* Cellulosic
 Wood-based
« Hardwood
« Softwood
* Annual plant
* Protein
* Inorganic
» Synthetic

« Semi-synthetic
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Uses of Fibers

« As the load-bearing element in structural composites

« The main structural component in self-bonded web products (paper

and board) and externally bonded products (non-wovens).

« As a functional component in a range of material applications e.qg.
excipients in medicine., filtration and sorption media, sensor

applications.

« Woven into textile materials
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Use of Pulp Fibers

« The most important source of cellulosic fibers is trees.

* Global paper and board production about 400 M tons/a, cotton

production, 25 M tons/a.

» Graphical papers (40% of total) are in secular decline, other

paper sectors enjoy GDP growth.

« There is intense interest in most companies to increase the
share of renewable materials in products; increased use of

cellulosics is an important theme.
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Evolution of fiber-based industry and
technology

Size of the
building blocks
decreases
meter -um-—-»nm

Functionality
Increases

» Performance
Increases

* Manufacturing
complexity increases

e (Costs??




Wood- the most important source for
natural cellulosic fibers
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Hardwood Anatomy
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Softwood anatomy
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Wood chemical make-up

Cellulose - around 40%
Hemicelluloses — 20-30%
Lignin — 23-27%
Extractives — few percent
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Cellulose

* Linear polymer based on
glucose repeating units

« DP-300-2000
» Crystallinity 50-70%
* Organized into fibril structure

* No glass transition,
decomposes below melting
temperature

« Safe. Odorless, tasteless

« Strong: 100-300 Gpa, similar
to iron

« Can be (easily) chemically
modified

» Hydrophilic, slightly swelling,
insoluble in water
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Hemicellulose

A family of mostly 5 carbon
sugars

DP 20-200

Branched Hﬁm
Amorphous and very water OH >
swollen N S OWOHSW AN
Glass transition below room G ’ -

temperature Ho o
Anionic
In wood links cellulose to lignin

In fibers acts as bonding agent

,, Aalto University
School of Chemical
Technology 15



Lignin

A complex 3-dimensional polymer of different
phenolic alcohol repeating units

Hydrophobic
Thermoplastic
In wood, lignin glues the fibers together - kN
. L . o L o o
In fibers, lignin interferes with hydrogen o™ i R f]}“ Lo
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Extractives

Volatile organic compounds
in wood have a range of
protective and other
functions

Are generally negative for
fiber properties and down
stream processes

Can be extracted in the fiber
production process and
converted into value added
chemicals or fuel.
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Heartwiood | Sapwood
Total extractives 0.39 037
Yolatile extractives
Terpenes and phenals d.h 21
Free fatty acids 220 227
Sterols 478 473
p-sitosterol a9.0 454

tonoglycerides 3.0 24
Diglycerides 0.0 0.0
Triglycerides 15.8 19.1
Unidentified 6.8 99

Eucalyptus

Grandis




Fiber classification

Natural vs synthetic

Wood vs wood pulp

Chemical vs. mechanical pulps
Bleached vs unbleached

Hardwood vs softwood

Virgin vs recycled (previously dried)
Refined vs unrefined
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Major routes for producing virgin fibers

Primary pulps (virgin fibers)

Chemical pulping Mechanical pulping

o
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pattern ¢

Lignin-
Hemicellulose
Cellulose-Fibrils

according to GORING

:{i}é‘ Pulp

Grinding Refining
About
e Lignin and hemicelluloses dissolve from e 7’ of wood becomes fines
the fiber wall e % of wood becomes broken fiber
e Fiber wall becomes thinner and more particles
flexible e % of wood is defibrated into fiber-
e Chipping shortens the fiber length like material
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Types of Chemical and Mechanical Pulp

Paper pulps -
%

e
P

Primary pulps %~ .

-

(virgin fibers) \
/ S

Mechanical pulp Semimechanical pulp Chemical pulp
/ \)(NSSC)
Groundwood Refiner pulp
Pressure — > RMP — —> Kraft pulp,
groundwood Sulfate pulp
—> TMP
Thermo
—_— 9 .
groundwood —> CTMP SOkt pup
N
v cMP BEX2
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Bleaching

Lignin containing fibers are
often bleached to increase
whiteness

Mechanical pulps are
“brightened” chemical pulps
“bleached”.

A range of bleaching
chemistries are used; chlorine,
dithionite, peroxide, oxygen —
based.

Bleaching usually degrades
cellulose, weakens fiber

Bleaching changes fiber
chemistry e.g. adds acid
groups, exposes cellulose
surfaces
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Chemical vs Mechanical Pulps

A!!

Yield 45-50%
Strong fibers
Flexible

Homogenous
Bleached fibers give
stable brightness

Aalto University
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Technology
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Mechanical pulp

* Yield 95-100%

* Heterogeneous

» High charge but low swelling

+ Lignin chemistry

* High amount of fines gives good optics and surface properties
* High charge but low swelling



Softwood fiber types

f Springer-Verlag Berlin Heidelberg
1995 .
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Reference: M.-S. llvessalo-Pfaffli, Fiber Atlas, Springer Berlin Heidelberg, 1995
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Hardwood fibers

!
fiber- i'
like II]
i)
B
square-
like

Fig. 2.26. Hardwood cells.

A Vessel element of birch

B Vessel of birch

C Vessel element of aspen

D Earlywood vessel element of oak
E Latewood vessel element of oak

,, Aalto University
School of Chemical
4 Technology

Hardwood fiber types

F Longitudinal parenchyma cells
G Ray parenchyma cells

H Tracheid of oak

1 Tracheid of birch

J Libriform fiber of oak

Distinctive feature:
Shape and pit structure
of vessel cells

Reference: M.-S. llvessalo-Pfiffli, Fiber
Atlas, Springer Berlin Heidelberg, 1995

Eucalyptus Vessel



Ultrastructure-

Cell wall as a composite structure

Lapericgat a
matare ol wall
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FIG. 310 Distribution of the principal chemical con-
stituents within the various layers of the cell wall in conifers.
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Structure of a microfibril

(macro)Fibrill

aggregate e e
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Fiber pore structure

» Macropores are gaps visible between fibril
aggregates.

« Even some larger cracks in the cell wall
are visible.
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Fig. 77—An electron micrograph of a cross-section of a spruce sulphite fibre pre- Fﬂ%ﬁml \.'J'-:,s‘ L j I
pared after solvent-exchange of the fibre from water to a mixture of butyl and methyl
methacrylates, followed by polymerisation. After sectioning, the polymer was washed Fig. 10—One of a number of micrographs publi : )
s ! . » g shed by Boyd and Foster‘#!
out and the section metal shadowed. Inset 1 pm. Micrograph by G. M. A. Aberson'*’ and variously attributed to A. Frey-\%’yfsling and R. D.yPres¥on. This one of
an ,inn‘er wall of Cladophora prolifera shows clearly the type of ‘lenticular open-
ing’ within lamellae which are suggested as common amongst plant cell walls
A. M Scallan
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Formation of pores in the cell wall

/Lignin
7~ Carbohydrate
8
VA
7
e
. Cellulose o o
Protofibrils 3 ﬁﬂ
“Lignin-Hemicellulose /’ e<
Hemicellulose Soluble Lignin
Macromolecules

(Goring et al., 1984)
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Pore Formation in Kraft Pulping
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* > Micropores
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FSP = Fiber saturation point, a measure of
fiber swelling.



Fiber analysis by critical point drying

Fibers have there full structural details only in the wet
state, but the scanning electron microscope (and many
other methods), demands dry samples.

How can we solve this problem?
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Removing the Solvent and Preventing
the Pore Collapse

CO, phase
diagram Pressure/MPa :
o : Supercritical
Liquid ¢ ;:e on
: €9 co,
@ < evaporation
7384 - e iiioioit
Acetone/CO,
Critical exchange
point
31.1
Temperature/°C
A” Sehool of Chemical Finnish Biocconomy
Technology



Analysis of Dry, Porous Fibers

Critical point

<«

evaporation

Micropores
(thermoporosimetry)

Water intermediate
saturated > solvent
fibers

Y

Exchange
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Mesopores
(N2 sorption)
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Macropores
(Hg Intrusion)

Water Sorption Isotherm
(DVS)
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Microscopy
(SEM, ESEM)




Dried Diss. HW, no critical point
drying

{ WD = 3.1 mm Mag = 11.84 KX Time :17:05:06

VP Target= 10 Pa

|n| \) B . . -
EHT = 1.30 kV ClustSignalAss SE2 Date :15 Apr 2015 A Aalto University

m Aalto-NMC



EHT = 1.40 kV Signal A = SE2 Date :15 Apr 2015 Aalto University

- - Time :18:17:39
WD = 3.4 mm Mag= 1.53 KX
VP Target= 10Pa m Aalto-NMC




EHT = 1.40 kV Signal A+ SE2 Date :15 Apr 2015 Aalto University
Time :18:29:48

WD = 3.4 mm Mag = 9.25 KX
VP Target= 10 Pa , Aalto-NMC




EHT = 1.40 kV Signal A = SE2 Date :15 Apr 2015 Aalto University
- Time :18:19:28
WD = 3.4 mm Mag = 8.32 KX
VP Target= 10Pa m Aalto-NMC




ND Diss. HW

Time :18:00:20

Mag = 22.33 KX
VP Target= 10 Pa

Signal A = SE2 Date :15 Apr 2015 A Aalto University

m Aalto-NMC




ND Kraft HW

EHT = 1.29 kv

WD = 8.0 mm
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ND Kraft HW

Signal A = SE2 Date :27 Mar 2015 A Aalto University

Time :15:40:33

Mag = 14.71 KX
VP Target= 10Pa

m Aalto-NMC




Micropores and compact cell wall
regions

N b/

Aalto University
- - Time :16:05:57

WD = 8.0 mm Mag = 4.96 KX m Aalto-NMC

1pm EHT = 1.29 kV Signal A = SE2 Date :27 Mar 2015 A
VP Target=10Pa
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N, Isotherms for Never-dried and
Previously-dried Dissolving Pulp

ND and dried Dissolving pulp from CPD

—=— ND Diss. 199 m*2/g; 0,37 ml/g
—e—dried Diss. 104 m"2/g, 0,16 ml/

Quantity Adsorbed (mmol/g)

— T — T T T
o0 01 02 03 04 05 06 07 08 09 10

Relative Pressure (p/p°)
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Pore Size Distribution for
Dissolving Pulps, N, Sorption

Pore size distribution by volume
0,45 -
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