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Lecture 0

Introduction and overview

® prerequisites

e some general features of convex optimization
e example

e duality example

e what we will /won’t do

e how many problems are convex?
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Prerequisites

e good knowledge of linear algebra

e elementary probability

® exposure to engineering
(mechanical, electrical, civil, ... )

e clementary analysis (norms, limits, ... )

e knowledge of Matlab, or willingness to learn

Not required but helps
e exposure to optimization

e numerical linear algebra
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Convex set

C C R" is convex if
r,ye O, Nel0, =X+ (1-NyeC

convex not convex

(more later!)
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Convex function

f:R" — R is convex if

z,y € R", AN€l0,1]
J
fOz+ (1 =Ny) < Af(@)+ (1= N)f(y)

(much more later!)
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Convex optimization problem

minimize f(z)
subject to x € C

f convex, C' convex

convex optimization problems
e can be solved numerically with great efficiency
e have extensive, useful theory
e occur often in engineering problems

e often go unrecognized
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tractable in theory and practice:

there exist algorithms s.t.

e computation time small, grows gracefully with
problem size

e global solutions attained
e non heuristic stopping criteria; provable lower bounds

e handle nondifferentiable as well as smooth problems

duality theory:

e n.a.s.c. for global optimality

e certificates that prove infeasibility or lower bounds on

objective

e sensitivity analysis w.r.t. changes in f, C
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Example

m lamps illuminating n (small, flat) patches

lamp power p;

illumination I;

—2
¥

m
]i — '21 A;iPj, Qi =T max{cos (92']', O}

lamp power limits: 0 < p; < pmax

problem:

minimize max | log I; — 108 lyes |
p]' 1= 1, N’
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How to solve?

1. uniform power: p; = p, vary p
could try heuristic adjustment of powers

2. least squares: minimize Y(/; — Tges )
J

(closed form, widely available, reliable software, fast)
what if Di 2 Pmax OF P; S 0?
could ‘saturate’ or add weights:

minimizey (1; — ]des)2 + > w; (p; — pmax/Z)2
j i

3. linear programming

... of course these are approximate ‘solutions’

in fact this problem can be formulated as a convex
optimization problem, hence is readily solved

exact solution obtained with effort &~ modest factor times
least squares effort
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Two additional constraints
1. no more than half total power is in any 10 lamps
2. no more than half of the lamps are on

Does adding (1) or (2) complicate the problem?

With (1), still easy to solve
With (2), extremely difficult to solve

moral:
without the proper background (i.e., this course)

very easy problems can appear quite similar to

very difficult problems.
(Untrained) intuition doesn’t always work.



What we will cover

e recognizing & exploiting convexity in engineering
context

e ideas of convex optimization

e a few algorithms (/ess is more, Le Corbusier)
extremal on the run time/code time tradeoff curve

What we won’t do
e details of convex analysis

e details of optimization theory (regularity conditions,
constraint qualifications, .. .)

e encyclopedia of algorithms



What fraction of ‘real’ problems are
convex?

e by no means all
e many more than are recognized

e convex optimization plays important role in
nonconvex optimization (more later)

Analog: linear programs

minimize cl'z

subject to alz <b;, i=1,...,m

e no “closed form” solution
e very large LPs solved very quickly in practice

e extensive, useful theory

How many problems are LPs?

1940s: “the real world is nonlinear, hence LP silly”
a few examples known (in planning)
many examples found after LP became widely known. ..



-

more practical problems solved via LP

-«

more interest in LPs

-«

courses, books, software. ..

-«

wider knowledge of LP

v

more practical problems recognized as LPs

(we guess) same story for convex optimization



convex optimization
e handles* some problems very well

e can say a lot about it

(simulated annealing, genetic algorithms, neural
networks, ... )

e handle™ many problems

e can say very little about it

* means a lot — global solutions, always works, worst
case computation time, etc.

" means much less — local solutions (sometimes), no
complexity theory, etc.



