Lecture 0 Introduction and overview

- prerequisites
- some general features of convex optimization
- example
- duality example
- what we will/won't do
- how many problems are convex?

Prerequisites

- good knowledge of linear algebra
- elementary probability
- exposure to engineering (mechanical, electrical, civil, ...)
- elementary analysis (norms, limits, ...)
- knowledge of Matlab, or willingness to learn

Not required but helps

- exposure to optimization
- numerical linear algebra

Convex set

 $C \subseteq \mathbf{R}^n$ is convex if

$$x, y \in C, \ \lambda \in [0, 1] \Rightarrow \lambda x + (1 - \lambda)y \in C$$

convex

not convex

(more later!)

Convex function

 $f:\mathbf{R}^n o \mathbf{R}$ is convex if

$$x, y \in \mathbf{R}^n, \quad \lambda \in [0, 1]$$

$$\downarrow \downarrow$$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

(much more later!)

Convex optimization problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

f convex, C convex

convex optimization problems

- can be solved numerically with great efficiency
- have extensive, useful theory
- occur often in engineering problems
- often go unrecognized

tractable in theory and practice:

there exist algorithms s.t.

- computation time small, grows gracefully with problem size
- global solutions attained
- non heuristic stopping criteria; provable lower bounds
- handle nondifferentiable as well as smooth problems

duality theory:

- n.a.s.c. for global optimality
- certificates that **prove** infeasibility or lower bounds on objective
- ullet sensitivity analysis w.r.t. changes in f, C

Example

m lamps illuminating n (small, flat) patches

$$I_i = \sum\limits_{j=1}^m a_{ij} p_j, \qquad a_{ij} = r_{ij}^{-2} \max\{\cos\theta_{ij}, 0\}$$
 lamp power limits: $0 \le p_j \le p_{\max}$

problem:

minimize
$$\max | \log I_i - \log I_{\mathsf{des}} |$$
 $p_j \quad i = 1, \dots, n$

How to solve?

- 1. uniform power: $p_i = p$, vary p could try heuristic adjustment of powers
- 2. least squares: minimize $\sum_{j} (I_j I_{\text{des}})^2$ (closed form, widely available, reliable software, fast) what if $p_i \geq p_{\text{max}}$ or $p_i \leq 0$? could 'saturate' or add weights:

minimize
$$\sum_{i} (I_j - I_{\mathsf{des}})^2 + \sum_{i} w_i (p_i - p_{\mathsf{max}}/2)^2$$

- 3. linear programming
- ... of course these are approximate 'solutions'

in fact this problem can be formulated as a convex optimization problem, hence is readily solved exact solution obtained with effort \approx modest factor times least squares effort

Two additional constraints

- 1. no more than half total power is in any 10 lamps
- 2. no more than half of the lamps are on

Does adding (1) or (2) complicate the problem?

With (1), still easy to solve With (2), **extremely difficult** to solve

moral:

without the proper background (i.e., this course) very easy problems can appear quite similar to very difficult problems.
(Untrained) intuition doesn't always work.

What we will cover

- recognizing & exploiting convexity in engineering context
- ideas of convex optimization
- a few algorithms (*less is more*, Le Corbusier) extremal on the run time/code time tradeoff curve

What we won't do

- details of convex analysis
- details of optimization **theory** (regularity conditions, constraint qualifications, . . .)
- encyclopedia of algorithms

What fraction of 'real' problems are convex?

- by no means all
- many more than are recognized
- convex optimization plays important role in nonconvex optimization (more later)

Analog: linear programs

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, i = 1, \dots, m$

- no "closed form" solution
- very large LPs solved very quickly in practice
- extensive, useful theory

How many problems are LPs?

1940s: "the real world is nonlinear, hence LP silly" a few examples known (in planning)

many examples found after LP became widely known...

(we guess) same story for convex optimization

convex optimization

- handles[⋆] some problems very well
- can say a lot about it

(simulated annealing, genetic algorithms, neural networks, . . .)

- handle[†] many problems
- can say very little about it

^{*} means a lot — global solutions, always works, worst case computation time, etc.

 $^{^{\}dagger}$ means much less — local solutions (sometimes), no complexity theory, etc.