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LINEAR AND MATRIX ALGEBRA

Vector signal description

Let the signal is represented by its values x1, . . . , xN . Then, in vector
notation:

x =

⎡
⎢⎢⎢⎣

x1
x2
· · ·
xN

⎤
⎥⎥⎥⎦

Vector transpose:

xT = [x1, x2, . . . , xN ]
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Sometimes, it is convenient to consider sets of vectors, for example:

x(n) =

⎡
⎢⎢⎢⎣

x(n)

x(n− 1)

· · ·
x(n−N + 1)

⎤
⎥⎥⎥⎦

Vector Euclidean norm:

||x|| =
⎧⎨
⎩

N∑
i=1

|xi|2
⎫⎬
⎭

1/2

Introducing Hermitian transpose

xH =
(
xT

)∗
=

[
x∗1, x∗2, . . . , x∗N

]
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we rewrite the norm as

||x|| =
√
xHx

The scalar (inner) product of two complex vectors a = [a1, . . . , aN ]T and
b = [b1, . . . , bN ]T :

aHb =
N∑
i=1

a∗i bi

Cauchy-Schwarz inequality

|aHb| ≤ ||a|| · ||b||

Orthogonal vectors:

aHb = bHa = 0
Aalto University
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The set of vectors x1,x2, . . . ,xn is said to be linearly independent if

α1x1 + α2x2 + · · ·+ αnxn = 0 (∗)

implies that αi = 0 for all i. If any set of nonzero αi can be found so that
(∗) holds, then the vectors are linearly dependent. For example, for
nonzero α1,

x1 = β2x2 + · · ·+ βnxn

Example of linearly independent vector set:

x1 =

⎡
⎢⎣ 1

2

1

⎤
⎥⎦ , x2 =

⎡
⎢⎣ 1

0

1

⎤
⎥⎦
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Adding to this linearly independent vector set a new vector x3, we obtain
that the new set

x1 =

⎡
⎢⎣ 1

2

1

⎤
⎥⎦ , x2 =

⎡
⎢⎣ 1

0

1

⎤
⎥⎦ , x3 =

⎡
⎢⎣ 0

1

0

⎤
⎥⎦

becomes linearly dependent because

x1 = x2 + 2x3
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Given N vectors x1,x2, . . . ,xN , consider the set of all vectors that may
be formed as a linear combination of the vectors xi,

x =
N∑
i=1

αixi

This set forms a vector space and the vectors xi are said to span this
space. If the vectors xi are linearly independent, they are said to form a
basis for this space and the number of basis vectors N is referred to as the
space dimension. The basis for a vector space is not unique!

Aalto University
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Matrices

n×m matrix:

A = {aik} =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m
a31 a32 a33 · · · a3m
... ... ... ... ...

an1 an2 an3 · · · anm

⎤
⎥⎥⎥⎥⎥⎦

Symmetric square matrix:

AT = A

Hermitian square matrix:

AH = A

Aalto University
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Some properties (apply to transpose (·)T as well):

(A+B)H = AH +BH , (AH)H = A , (AB)H = BHAH

Column and row representations of an n×m matrix:

A = [c1, c2, . . . , cm] =

⎡
⎢⎢⎢⎣
rH1
rH2
...

rHn

⎤
⎥⎥⎥⎦ (∗)

The rank of A is defined as a number of linearly independent columns in
(∗), or, equivalently, the number of linearly independent row vectors in (∗).
Important property:

rank{A} = rank{AAH} = rank{AHA}
Aalto University
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For any n×m matrix:

rank{A} ≤ min{m,n}

The matrix A is said to be of full rank if

rank{A} = min{m,n}

If the square matrix A is of full rank, then there exists a unique matrix
A−1, called the inverse of A:

A−1A = AA−1 = I

Aalto University
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The matrix I is the so-called identity matrix:

I =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
... ... ... ... ...
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

The n× n matrix A is called singular if its inverse does not exist (i.e., if
rank{A} < n).
Some properties of inverse:

(AB)−1 = B−1A−1 , (AH)−1 = (A−1)H

Aalto University
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Determinant of a square n× n matrix (for any i):

detA =
n∑

k=1

(−1)i+kaikdetAik

where Aik is the (n− 1)× (n− 1) matrix formed by deleting the ith
row and the kth column of A.
Example:

A =

⎡
⎢⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥⎦

detA = a11

[
a22 a23
a32 a33

]
− a12

[
a21 a23
a31 a33

]
+ a13

[
a21 a22
a31 a32

]
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Property: an n× n matrix A is invertible (nonsingular) if and only if its
determinant is nonzero

detA �= 0

Some additional important properties of determinant:

det{AB} = detA detB , det{αA} = αn detA

detA−1 =
1

detA
, detAT = detA

Another important function of matrix is trace:

trace{A} =
n∑

i=1

aii

Aalto University
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Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering,
etc.) require the solution to a set of linear equations:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

In matrix notation

Ax = b

Aalto University
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Case 1: square matrix A (m = n). The nature of solution depends upon
whether or not A is singular. In the nonsingular case

x = A−1b

If A is singular, there may be no solution or many solutions.
Example:

x1 + x2 = 1

x1 + x2 = 2 no solution

However, if we modify the equations:

x1 + x2 = 1

x1 + x2 = 1 many solutions

Aalto University
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Case 2: rectangular matrix A (m < n). More equations than unknowns
and, in general, no solution exist. The system is called overdetermined.
In the case when A is a full rank matrix, and, therefore, AHA is
nonsingular, the common approach is to find least squares solution by
minimizing the norm of the error vector

||e||2 = ||b−Ax||2
= (b−Ax)H(b−Ax)

= bHb− xHAHb− bHAx+ xHAHAx

=
[
x− (AHA)−1AHb

]H
(AHA)

[
x− (AHA)−1AHb

]
+

[
bHb− bHA(AHA)−1AHb

]

Aalto University
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The second term is independent of x. Therefore, the LS solution is

xLS = (AHA)−1AHb

The best (LS) approximation of b is given by

b̂ = AxLS = A(AHA)−1AHb = PAb

where

PA = A(AHA)−1AH

is the so-called projection matrix with the properties

PAa = a

Aalto University
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if the vector a belongs to the column-space of A and

PAa = 0

if this vector is orthogonal to the columns of A
The minimum LS error

||e||2min = ||b−AxLS||2
= ||(I−A(AHA)−1AH)b||2
= ||(I−PA)b||2 = ||P⊥

Ab||2 = bHP⊥
Ab

where P⊥
A = I−PA is the projection matrix on the subspace orthogonal

to the column-space of A.

Aalto University
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Alternatively, the LS solution is found from the normal equations

AHAx = AHb

Case 3: rectangular matrix A (n < m). Fewer equations than unknowns
and, provided the equations are consistent, there are many solutions. The
system is called underdetermined.

Aalto University
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Special matrix forms

Diagonal square matrix:

A = diag{a11, a22, . . . , ann} =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0

0 a22 0 · · · 0

0 0 a33 · · · 0
... ... ... ... ...
0 0 · · · 0 ann

⎤
⎥⎥⎥⎥⎥⎦

Exchange matrix:

J =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 1

0 · · · 0 1 0

0 · · · 1 0 0
... ... ... ... ...
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

Aalto University
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Toeplitz matrix:

aik = ai+1,k+1 for all i, k < n

Example: ⎡
⎢⎢⎢⎣
1 3 2 4

2 1 3 2

7 2 1 3

1 7 2 1

⎤
⎥⎥⎥⎦

Aalto University
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2.4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix A:

Q(x) = xTAx

Similarly, Hermitian form of a Hermitian square matrix A:

Q(x) = xHAx

Symmetric (Hermitian) matrices are positive semidefinite if Q(x) ≥ 0 for
all nonzero x.
Example: the matrix A = yyH is positive semidefinite, where y is an
arbitrary complex vector:

Q(x) = xHyyHx = |xHy|2 ≥ 0

Aalto University
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Eigenvalues and eigenvectors

Consider the characteristic equation of an n× n matrix A:

Au = λu

This is equivalent to the following set of homogeneous linear equations

(A− λI)u = 0

Therefore, the matrix A− λI is singular. Hence,

p(λ) = det(A− λI) = 0

where p(λ) is the so-called characteristic polynomial with n roots λi
(i = 1, 2 . . . , n) being the eigenvalues of A.

Aalto University
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For each eigenvalue λi, the matrix A− λiI is singular, and, therefore,
there will be at least one nonzero eigenvector that solves the equation

Aui = λiui

Since for any eigenvector ui any vector αui will be also an eigenvector,
the eigenvectors are often normalized:

||ui|| = 1 , i = 1, 2, . . . , n

Property 1: The eigenvectors u1,u2, . . . ,un corresponding to distinct
eigenvalues are linearly independent.
Property 2: If rank{A} = m, then there will be n−m independent
solutions to the homogeneous equation Aui = 0. These solutions form
the so-called null-space of A.
Aalto University
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Property 3: The eigenvalues of a Hermitian matrix are real.

Proof: From the characteristic equation Aui = λiui, we have

uHi Aui = λiu
H
i ui (∗)

Taking the Hermitian transpose of (∗), we have

uHi AHui = λ∗iuHi ui (∗∗)

Since A is Hermitian (A = AH), (∗∗) becomes

uHi Aui = λ∗iuHi ui (∗ ∗ ∗)

Finally, comparison of (∗) and (∗ ∗ ∗) shows that λi are real.

Aalto University
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Property 4: A Hermitian matrix is positive definite if and only if the
eigenvalues of A are positive.

Similar property holds for positive semidefinite, negative definite, or
negative semidefinite matrices.

A useful relationship between matrix determinant and eigenvalues:

det{A} =

n∏
i=1

λi

Therefore, any matrix is invertible (nonsingular) if and only if all of its
eigenvalues are nonzero.

Aalto University
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Property 5: The eigenvectors of a Hermitian matrix corresponding to
distinct eigenvalues are orthogonal, i.e., if λi �= λk, then uHi uk = 0.

Proof: Let λi and λk be two distinct eigenvalues of A. Then

Aui = λiui and Auk = λkuk

Multiplying these equations by uHk and uHi , respectively, yields

uHk Aui = λiu
H
k ui , uHi Auk = λku

H
i uk (∗)

Taking the Hermitian transpose of the second equation of (∗) and
remarking that A is Hermitian (i.e., AH = A and λ∗k = λk), yields

uHk Aui = λku
H
k ui (∗∗)

Aalto University
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Now, subtracting (∗∗) from the first equation of (∗) leads to

0 = (λi − λk)u
H
k ui

Since the eigenvalues are distinct (i.e., λi �= λk), we have that

uHk ui = 0

which proofs the orthogonality of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this
property can be extended to any n× n Hermitian matrix with arbitrary
(not necessarily distinct) eigenvalues.

Aalto University
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Eigendecomposition

For an n× n matrix A, we may perform an eigendecomposition:

A = UΛU−1 (∗)

To do this, let us write the set of equations

Aui = λiui , i = 1, 2, . . . , n

in the form

A[u1,u2, . . . ,un] = [λ1u1, λ2u2, . . . , λnun] , or, equivalentely

AU = UΛ with Λ = diag{λ1, λ2, . . . , λn} (∗∗)
and nonsingular U. Multiplying (∗∗) on the right by U−1, we get (∗).
Aalto University
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For a Hermitian matrix, the following property holds because of the
orthonormality of eigenvectors:

UHU = I

Hence, U is unitary (i.e., UH = U−1), and, therefore, the
eigendecomposition takes the form

A = UΛUH

or, equivalently,

A =
n∑

i=1

λiuiu
H
i

Aalto University
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Using the unitary property of U, it is easy to find matrix inverse via
eigendecomposition:

A−1 = (UΛUH)−1

= (UH)−1Λ−1U−1

= UΛ−1UH

Equivalently

A−1 =
n∑

i=1

1

λi
uiu

H
i

Hence, the inverse does not affect eigenvectors but transforms eigenvalues
λi to 1/λi.

Aalto University
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In many applications, matrices may be very close to singular
(ill-conditioned) and, therefore, their inverse may be unstable. We may
wish to stabilize the problem by adding a constant to each term along
diagonal (the so-called diagonal loading):

A = B+ αI

This operation leaves eigenvectors unchanged but changes eigenvalues:

Aui = Bui + αui = (λi + α)ui

where λi and ui are the eigenvalues and eigenvectors of B:

Bui = λiui

Aalto University
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We can reformulate the trace of A in terms of eigenvalues:

trace{A} =
n∑

i=1

λi (∗)

Similarly,

trace{A−1} =

n∑
i=1

1

λi

This property can be easily proven using the eigendecomposition and the
property trace{A+B} = trace{A}+ trace{B}. In several
applications (such as adaptive filtering), we need some simple and close
upper bound for the maximal eigenvalue λmax. From (∗), we obtain that

λmax ≤ trace{A}
Aalto University
Dept. Signal Processing and Acoustics 33



ELEC-E5420, Espoo 2016

Singular value decomposition

For a nonsquare n×m matrix A, we may perform the SVD instead of
eigendecomposition:

A = UΛVH

or, equivalently

A =
n∑

i=1

λiuiv
H
i if n < m

and

A =
m∑
i=1

λiuiv
H
i if n > m

where ui and vi are the n× 1 and m× 1 left and right singular vectors,
respectively, and λi are singular values.
Aalto University
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