Lecture 2 Convex functions

- convex functions, epigraph
- simple examples, elementary properties
- more examples, more properties
- Jensen's inequality
- quasiconvex, quasiconcave functions
- log-convex and log-concave functions
- ullet K-convexity

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is *convex* if $\mathbf{dom} f$ is convex and

$$x,y\in \operatorname{\mathbf{dom}} f,\ \lambda\in[0,1]$$

$$\Downarrow$$

$$f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y) \tag{1}$$

f is concave if -f is convex

'Modern' definition: $f: \mathbf{R}^n o \mathbf{R} \cup \{+\infty\}$ (but not identically $+\infty$)

f is convex if (1) holds as an inequality in $\mathbf{R} \cup \{+\infty\}$

Epigraph & sublevel sets

The epigraph of the function f is

$$epi f = \{(x, t) \mid x \in dom f, f(x) \le t \}.$$

f convex function $\Leftrightarrow \operatorname{epi} f$ convex set

The $(\alpha$ -)sublevel set of f is

$$C(\alpha) \stackrel{\Delta}{=} \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}.$$

f convex \Rightarrow sublevel sets are convex (converse false)

Differentiable convex functions

f differentiable and convex

$$\iff \forall x, x_0 : f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$$

Interpretation

- ullet 1st order Taylor appr. is a global lower bound on f
- \bullet supporting hyperplane to $\mathbf{epi}\ f$:

$$(x,t) \in \mathbf{epi} f \Longrightarrow \begin{bmatrix} \nabla f(x_0) \\ -1 \end{bmatrix}^T \begin{bmatrix} x - x_0 \\ t - f(x_0) \end{bmatrix} \le 0$$

f twice differentiable and convex $\Longleftrightarrow \nabla^2 f(x) \succeq 0$

Simple examples

- ullet linear and affine functions: $f(x) = a^T x + b$
- convex quadratic functions: $f(x) = x^T P x + 2q^T x + r \text{ with } P = P^T \succeq 0$
- any norm

Examples on ${\bf R}$

- x^{α} is convex on \mathbf{R}_{+} for $\alpha \geq 1$, $\alpha \leq 0$; concave for $0 \leq \alpha \leq 1$
- ullet $\log x$ is concave, $x \log x$ is convex on ${f R}_+$
- \bullet $e^{\alpha x}$ is convex
- |x|, $\max(0, x)$, $\max(0, -x)$ are convex
- $\log \int_{-\infty}^{x} e^{-t^2} dt$ is concave

Elementary properties

• a function is convex iff it is convex on all lines:

$$f$$
 convex $\iff f(x_0 + th)$ convex in t for all x_0, h

• positive multiple of convex function is convex:

$$f \text{ convex}, \alpha \geq 0 \Longrightarrow \alpha f \text{ convex}$$

• sum of convex functions is convex:

$$f_1, f_2 \text{ convex} \implies f_1 + f_2 \text{ convex}$$

• extends to infinite sums, integrals:

$$g(x,y)$$
 convex in $x \Longrightarrow \int g(x,y)dy$ convex

• pointwise maximum:

$$f_1, f_2 \text{ convex} \implies \max\{f_1(x), f_2(x)\} \text{ convex}$$
 (corresponds to intersection of epigraphs)

• pointwise supremum:

$$f_{\alpha} \operatorname{convex} \implies \sup_{\alpha \in \mathcal{A}} f_{\alpha} \operatorname{convex}$$

• affine transformation of domain

$$f \text{ convex } \Rightarrow f(Ax + b) \text{ convex}$$

More examples

• piecewise-linear functions: $f(x) = \max_{i} \{a_i^T x + b_i\}$ is convex in x (epi f is polyhedron)

- ullet max distance to any set, $\sup_{s \in S} \|x s\|$, is convex in x
- $f(x) = x_{[1]} + x_{[2]} + x_{[3]}$ is convex on \mathbf{R}^n ($x_{[i]}$ is the ith largest x_j)
- $f(x) = \left(\prod_{i} x_i\right)^{1/n}$ is concave on \mathbf{R}^n_+
- $f(x) = \sum_{i=1}^{m} \log(b_i a_i^T x)^{-1}$ is convex on $\mathcal{P} = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$
- least-squares cost as functions of weights,

$$f(w) = \inf_{x} \sum_{i} w_i (a_i^T x - b_i)^2,$$

is concave in w

Convex functions of matrices

• $\operatorname{Tr} X$ is linear in X; more generally, $\operatorname{Tr} A^T X = \sum_{i,j} A_{ij} X_{ij} = \operatorname{vec}(A)^T \operatorname{vec}(X)$

• $\log \det X^{-1}$ is convex on $X = X^T \succ 0$ **Proof:** let λ_i be the eigenvalues of $X_0^{-1/2} H X_0^{-1/2}$

$$f(t) \triangleq \log \det(X_0 + tH)^{-1}$$

$$= \log \det X_0^{-1} + \log \det(I + tX_0^{-1/2}HX_0^{-1/2})^{-1}$$

$$= \log \det X_0^{-1} - \sum_i \log(1 + t\lambda_i)$$

is a convex function of t

- $\bullet \ (\det X)^{1/n}$ is concave on $X = X^T \succ 0$, $X \in \mathbf{R}^{n \times n}$
- ullet $\lambda_{\max}(X)$ is convex on $X=X^T$

Proof:
$$\lambda_{\max}(X) = \sup_{\|y\|=1} y^T X y$$

ullet $\|X\| = \left(\lambda_{\max}(X^TX)\right)^{1/2}$ is convex on $\mathbf{R}^{n imes m}$

Proof:
$$||X|| = \sup_{\|u\|=1, \|v\|=1} u^T X v$$

Minimizing over some variables

If h(x,y) is convex in x and y, then

$$f(x) = \inf_{y} h(x, y)$$

is convex in x

corresponds to projection of epigraph, $(x,y,t) \rightarrow (x,t)$

Example. If $S \subseteq \mathbb{R}^n$ is convex then (min) distance to S,

$$\mathbf{dist}(x,S) = \inf_{s \in S} \|x - s\|$$

is convex in x

Example. If g(x) is convex, then

$$f(y) = \inf\{g(x) \mid Ax = y\}$$

is convex in y.

Proof: find B, C s.t.

$$\{x\mid Ax=y\}=\{By+Cz\mid z\in\mathbf{R}^k\}$$
 so
$$f(y)=\inf_z g(By+Cz)$$

'Modern' proof: $f(y)=\inf_z g(x)+h(Ax-y)$ where $h(z)=\left\{ egin{array}{ll} 0 & \mbox{if }z=0 \\ +\infty & \mbox{otherwise} \end{array} \right.$

is convex

Composition — one-dimensional case

$$f(x) = h(g(x))$$

is convex if

- g convex; h convex, nondecreasing
- ullet g concave; h convex, nonincreasing

Examples

- $f(x) = \exp g(x)$ is convex if g is convex
- \bullet f(x) = 1/g(x) is convex if g is concave, positive
- $\bullet \ f(x) = g(x)^p \text{, } p \geq 1 \text{, is convex if } g(x) \text{ convex, positive}$
- \bullet f_1, \ldots, f_n convex, then $f(x) = -\sum_i \log(-f_i(x))$ is convex on $\{x \mid f_i(x) < 0, i = 1, \ldots, n\}$

Proof: (differentiable functions, $x \in \mathbf{R}$)

$$f'' = h''(g')^2 + g''h'$$

Composition — *k*-dimensional case

$$f(x) = h(g_1(x), \dots, g_k(x))$$

with $h: \mathbf{R}^k \to \mathbf{R}$, $g_i: \mathbf{R}^n \to \mathbf{R}$ is convex if

- ullet h convex, nondecreasing in each arg.; g_i convex
- ullet h convex, nonincreasing in each arg.; g_i concave
- etc.

Examples

- $f(x) = \max_i g_i(x)$ is convex if each g_i is
- $f(x) = \log \sum_{i} \exp g_i(x)$ is convex if each g_i is

Proof: (differentiable functions, n = 1)

$$f'' = \nabla h^T \begin{bmatrix} g_1'' \\ \vdots \\ g_k'' \end{bmatrix} + \begin{bmatrix} g_1' \\ \vdots \\ g_k' \end{bmatrix}^T \nabla^2 h \begin{bmatrix} g_1' \\ \vdots \\ g_k' \end{bmatrix}$$

Jensen's inequality

$$f: \mathbf{R}^n \to \mathbf{R}$$
 convex

• two points

$$\lambda \in [0,1] \\ \Downarrow \\ f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

• more than two points

$$\lambda_i \ge 0, \quad \sum_i \lambda_i = 1$$

$$\downarrow \downarrow$$

$$f(\sum_i \lambda_i x_i) \le \sum_i \lambda_i f(x_i)$$

continuous version

$$p(x) \ge 0, \quad \int p(x)dx = 1$$
 $\downarrow \downarrow$
 $f(\int xp(x)dx) \le \int f(x)p(x)dx$

• most general form:

$$f(\mathbf{E} x) \le \mathbf{E} f(x)$$

Interpretation: (zero mean) randomization, dithering increases average value of a convex function

Applications

Many (some people claim most) inequalities can be derived from Jensen's inequality

Example. Arithmetic-geometric mean inequality

$$a, b \ge 0 \Rightarrow \sqrt{ab} \le (a+b)/2$$

Proof. $f(x) = \log x$ is concave on \mathbf{R}_+ :

$$\frac{1}{2}(\log a + \log b) \le \log\left(\frac{a+b}{2}\right)$$

Quasiconvex functions

 $f: C \to \mathbf{R}$, C a convex set, is *quasiconvex* if every sublevel set $S_{\alpha} = \{x \mid f(x) \leq \alpha\}$ is convex.

can have 'locally flat' regions

f is quasiconcave if -f is quasiconvex, i.e., superlevel sets $\{x \mid f(x) \geq \alpha\}$ are convex.

A function which is both quasiconvex and quasiconcave is called *quasilinear*.

f convex (concave) $\Rightarrow f$ quasiconvex (quasiconcave)

Examples

- ullet $f(x) = \sqrt{|x|}$ is quasiconvex on ${f R}$
- $f(x) = \log x$ is quasilinear on \mathbf{R}_+
- linear fractional function,

$$f(x) = \frac{a^T x + b}{c^T x + d}$$

is quasilinear on the halfspace $\boldsymbol{c}^T\boldsymbol{x} + \boldsymbol{d} > 0$

- $f(x) = \frac{\|x-a\|}{\|x-b\|}$ is quasiconvex on the halfspace $\{x \mid \|x-a\| \leq \|x-b\|\}$
- \bullet $f(a) = \mathsf{degree}(a_0 + a_1t + \cdots + a_kt^k)$ on \mathbf{R}^{k+1}

Properties

• f is quasiconvex if and only if it is quasiconvex on lines, i.e., $f(x_0 + th)$ quasiconvex in t for all x_0, h .

ullet modified Jensen's inequality: $f:C o {f R}$ quasiconvex if and only if

$$x,y \in C, \lambda \in [0,1]$$

$$\Downarrow$$

$$f(\lambda x + (1-\lambda)y) \leq \max\{f(x),f(y)\}$$

ullet for f differentiable, f quasiconvex if and only if for all x, y

$$f(y) \le f(x) \Rightarrow (y - x)^T \nabla f(x) \le 0$$

• positive multiples

f quasiconvex, $\alpha \geq 0 \Longrightarrow \alpha f$ quasiconvex

• pointwise maximum

 f_1, f_2 quasiconvex $\Longrightarrow \max\{f_1, f_2\}$ quasiconvex (extends to supremum over arbitrary set)

• affine transformation of domain

f quasiconvex $\Longrightarrow f(Ax+b)$ quasiconvex

• projective transformation of domain

$$f \ \mbox{quasiconvex} \Longrightarrow f\left(\frac{Ax+b}{c^Tx+d}\right) \ \mbox{quasiconvex}$$
 on $c^Tx+d>0$

ullet composition with monotone increasing function f quasiconvex, g monotone increasing $\Longrightarrow g(f(x))$ quasiconvex

sums of quasiconvex functions are **not** quasiconvex in general

 \bullet f quasiconvex in $x,\,y \Longrightarrow g(x) = \inf_y f(x,y)$ quasiconvex in x

Nested sets characterization

f quasiconvex \Rightarrow sublevel sets S_{α} convex, nested, i.e.,

$$\alpha_1 \le \alpha_2 \Rightarrow S_{\alpha_1} \subseteq S_{\alpha_2}$$

converse: if T_{α} is a nested family of convex sets, then

$$f(x) = \inf\{\alpha \mid x \in T_{\alpha}\}\$$

is quasiconvex.

Engineering interpretation: T_{α} are specs, tighter for smaller α

Log-concave functions

 $f: \mathbf{R}^n \to \mathbf{R}_+$ is log-concave (log-convex) if $\log f$ is concave (convex)

 $Log-convex \Rightarrow convex$; $concave \Rightarrow log-concave$

'Modern' definition allows log-concave f to take on value zero, so $\log f$ takes on value $-\infty$

Examples

- \bullet normal density, $f(x) = e^{-(1/2)(x-x_0)^T \Sigma^{-1}(x-x_0)}$
- erfc, $f(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt$
- indicator function of convex set C:

$$I_C(x) = \begin{cases} 1 & x \in C \\ 0 & x \notin C \end{cases}$$

Properties

 sum of log-concave functions not always log-concave (but sum of log-convex functions is log-convex)

products

$$f,g \; {\sf log\text{-}concave} \implies fg \; {\sf log\text{-}concave}$$
 (immediate)

• integrals

$$f(x,y)$$
 log-concave in $x,y \Longrightarrow \int f(x,y)dy$ log-concave

convolutions

$$f,g$$
 log-concave $\Longrightarrow \int f(x-y)g(y)dy$ log-concave (immediate from the properties above)

Log-concave probability densities

Many common probability density functions are log-concave.

Examples

• normal $(\Sigma \succ 0)$

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

ullet exponential $(\lambda_i > 0)$

$$f(x) = \left(\prod_{i=1}^{n} \lambda_i\right) e^{-(\lambda_1 x_1 + \dots + \lambda_n x_n)}$$

on \mathbf{R}^n_+

ullet uniform distribution on convex (bounded) set C

$$f(x) = \begin{cases} 1/\alpha & x \in C \\ 0 & x \notin C \end{cases}$$

where α is Lebesgue measure of C (i.e., length, area, volume ...)

K-convexity

convex cone $K \subseteq \mathbf{R}^m$ induces generalized inequality \preceq_K

$$f: \mathbf{R}^n \to \mathbf{R}^m \text{ is } K\text{-convex if } 0 \leq \lambda \leq 1 \implies$$

$$f(\lambda x + (1-\lambda)y) \preceq_K \lambda f(x) + (1-\lambda)f(y)$$

Example. K is PSD cone (called *matrix convexity*) let's show that $f(X) = X^2$ is K-convex on $\{X|X=X^T\}$, i.e., for $\lambda \in [0,1]$, $(\lambda X + (1-\lambda)Y)^2 \preceq \lambda X^2 + (1-\lambda)Y^2$ (1)

for any $u \in \mathbf{R}^m$, $u^T X^2 u = \|Xu\|^2$ is a (quadratic) convex fct of X, so

$$u^T(\lambda X + (1-\lambda)Y)^2 u \leq \lambda u^T X^2 u + (1-\lambda)u^T Y^2 u$$
 which implies (1)