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Lecture 2

Convex functions

ELEC-E5420

� convex functions, epigraph

� simple examples, elementary properties

� more examples, more properties

� Jensen's inequality

� quasiconvex, quasiconcave functions

� log-convex and log-concave functions

� K-convexity
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Convex functions

f : Rn ! R is convex if dom f is convex and

x; y 2 dom f; � 2 [0; 1]

+
f(�x + (1� �)y) � �f(x) + (1� �)f(y) (1)

f is concave if �f is convex

xxx

convex concave neither

`Modern' de�nition: f : Rn ! R [ f+1g
(but not identically +1)

f is convex if (1) holds as an inequality in R [ f+1g
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Epigraph & sublevel sets

The epigraph of the function f is

epi f = f(x; t) j x 2 dom f; f(x) � t g :

x

f(x)

epi f

f convex function , epi f convex set

The (�-)sublevel set of f is

C(�) �= fx 2 dom f j f(x) � �g :
f convex ) sublevel sets are convex (converse false)
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Di�erentiable convex functions

f di�erentiable and convex

() 8x; x0 : f(x) � f(x0) +rf(x0)T (x� x0)

xx0

f(x)

f(x0) +rf(x0)T (x� x0)

Interpretation

� 1st order Taylor appr. is a global lower bound on f

� supporting hyperplane to epi f :

(x; t) 2 epi f =)
2
664rf(x0)�1

3
775
T 2
664 x� x0
t� f(x0)

3
775 � 0

f(x)

2
4 rf(x0)�1

3
5

f twice di�erentiable and convex () r2f(x) � 0
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Simple examples

� linear and a�ne functions: f(x) = aTx + b

� convex quadratic functions:
f(x) = xTPx + 2qTx + r with P = P T � 0

� any norm

Examples on R

� x� is convex on R+ for � � 1, � � 0; concave for
0 � � � 1

� log x is concave, x log x is convex on R+

� e�x is convex

� jxj, max(0; x), max(0;�x) are convex

� log
Z x
�1 e�t

2

dt is concave
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Elementary properties

� a function is convex i� it is convex on all lines:

f convex () f(x0 + th) convex in t for all x0; h

� positive multiple of convex function is convex:

f convex; � � 0 =) �f convex

� sum of convex functions is convex:

f1; f2 convex =) f1 + f2 convex

� extends to in�nite sums, integrals:

g(x; y) convex in x =) Z
g(x; y)dy convex
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� pointwise maximum:

f1; f2 convex =) maxff1(x); f2(x)g convex

(corresponds to intersection of epigraphs)

f1(x)

f2(x)

x

epimaxff1; f2g

� pointwise supremum:

f� convex =) sup
�2A

f� convex

� a�ne transformation of domain

f convex ) f(Ax + b) convex
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More examples

� piecewise-linear functions: f(x) = max
i
faTi x + big is

convex in x (epi f is polyhedron)

� max distance to any set, sup
s2S

kx� sk, is convex in x

� f(x) = x[1] + x[2] + x[3] is convex on Rn

(x[i] is the ith largest xj)

� f(x) =
0
B@Y
i
xi

1
CA
1=n

is concave on Rn
+

� f(x) = mX
i=1

log(bi � aTi x)
�1 is convex on

P = fx j aTi x < bi; i = 1; : : : ;mg

� least-squares cost as functions of weights,

f(w) = inf
x

X
i
wi(a

T
i x� bi)

2;

is concave in w
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Convex functions of matrices

� TrX is linear in X ; more generally,
TrATX =

X
i;j
AijXij = vec(A)T vec(X)

� log detX�1 is convex on X = XT � 0

Proof: let �i be the eigenvalues of X
�1=2
0 HX

�1=2
0

f(t) �= log det(X0 + tH)�1

= log detX�1
0 + log det(I + tX

�1=2
0 HX

�1=2
0 )�1

= log detX�1
0 � X

i
log(1 + t�i)

is a convex function of t

� (detX)1=n is concave on X = XT � 0, X 2 Rn�n

� �max(X) is convex on X = XT

Proof: �max(X) = sup
kyk=1

yTXy

� kXk =
�
�max(X

TX)
�1=2

is convex on Rn�m

Proof: kXk = sup
kuk=1; kvk=1

uTXv
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Minimizing over some variables

If h(x; y) is convex in x and y, then

f(x) = inf
y
h(x; y)

is convex in x

corresponds to projection of epigraph, (x; y; t)! (x; t)

x

y

h(x; y)

f(x)
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Example. If S � Rn is convex then (min) distance to S,

dist(x; S) = inf
s2S kx� sk

is convex in x

Example. If g(x) is convex, then

f(y) = inffg(x) j Ax = yg
is convex in y.

Proof: �nd B, C s.t.

fx j Ax = yg = fBy + Cz j z 2 Rkg
so f(y) = infz g(By + Cz)

`Modern' proof: f(y) = infz g(x) + h(Ax� y) where

h(z) =

8>><
>>:
0 if z = 0
+1 otherwise

is convex
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Composition | one-dimensional case

f(x) = h(g(x))

is convex if

� g convex; h convex, nondecreasing

� g concave; h convex, nonincreasing

Examples

� f(x) = exp g(x) is convex if g is convex

� f(x) = 1=g(x) is convex if g is concave, positive

� f(x) = g(x)p, p � 1, is convex if g(x) convex,
positive

� f1, . . . , fn convex, then f(x) = �X
i
log(�fi(x)) is

convex on fx j fi(x) < 0; i = 1; : : : ; ng

Proof: (di�erentiable functions, x 2 R)

f 00 = h00(g0)2 + g00h0
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Composition | k-dimensional case

f(x) = h(g1(x); : : : ; gk(x))

with h : Rk ! R, gi : R
n ! R is convex if

� h convex, nondecreasing in each arg.; gi convex

� h convex, nonincreasing in each arg.; gi concave

� etc.

Examples

� f(x) = maxi gi(x) is convex if each gi is

� f(x) = log
X
i
exp gi(x) is convex if each gi is

Proof: (di�erentiable functions, n = 1)

f 00 = rhT
2
6666664

g001
...
g00k

3
7777775 +

2
6666664

g01
...
g0k

3
7777775

T

r2h

2
6666664

g01
...
g0k

3
7777775
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Jensen's inequality

f : Rn ! R convex

� two points

� 2 [0; 1]
+

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2)

� more than two points

�i � 0;
X
i
�i = 1

+
f(

X
i
�ixi) � X

i
�if(xi)

� continuous version

p(x) � 0;
Z
p(x)dx = 1
+

f(
Z
xp(x)dx) � Z

f(x)p(x)dx

� most general form:

f(E x) � E f(x)

Interpretation: (zero mean) randomization, dithering
increases average value of a convex function
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Applications

Many (some people claim most) inequalities can be
derived from Jensen's inequality

Example. Arithmetic-geometric mean inequality

a; b � 0)
p
ab � (a + b)=2

Proof. f(x) = log x is concave on R+:

1

2
(log a + log b) � log

0
B@a + b

2

1
CA
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Quasiconvex functions

f : C ! R, C a convex set, is quasiconvex if every
sublevel set S� = fx j f(x) � �g is convex.

x

y

�

S�

can have `locally 
at' regions

x

f(x)

f is quasiconcave if �f is quasiconvex, i.e., superlevel
sets fx j f(x) � �g are convex.

A function which is both quasiconvex and quasiconcave is
called quasilinear.

f convex (concave) ) f quasiconvex (quasiconcave)
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Examples

� f(x) = rjxj is quasiconvex on R

� f(x) = log x is quasilinear on R+

� linear fractional function,

f(x) =
aTx + b

cTx + d

is quasilinear on the halfspace cTx + d > 0

� f(x) = kx� ak
kx� bk is quasiconvex on the halfspace

fx j kx� ak � kx� bkg

� f(a) = degree(a0 + a1t + � � � + akt
k) on Rk+1
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Properties

� f is quasiconvex if and only if it is quasiconvex on
lines, i.e., f(x0 + th) quasiconvex in t for all x0; h.

� modi�ed Jensen's inequality: f : C ! R

quasiconvex if and only if

x; y 2 C; � 2 [0; 1]

+
f(�x + (1� �)y) � maxff(x); f(y)g

f(x)

x y
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� for f di�erentiable, f quasiconvex if and only if for all
x, y

f(y) � f(x)) (y � x)Trf(x) � 0

S�1

S�2

S�3

x
rf(x)

�1 < �2 < �3

� positive multiples

f quasiconvex; � � 0 =) �f quasiconvex

� pointwise maximum

f1; f2 quasiconvex =) maxff1; f2g quasiconvex

(extends to supremum over arbitrary set)

� a�ne transformation of domain

f quasiconvex =) f(Ax + b) quasiconvex
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� projective transformation of domain

f quasiconvex =) f
0
B@Ax + b

cTx + d

1
CA quasiconvex

on cTx + d > 0

� composition with monotone increasing function

f quasiconvex; g monotone increasing

=) g(f(x)) quasiconvex

� sums of quasiconvex functions are not quasiconvex in
general

� f quasiconvex in x, y =) g(x) = inf
y
f(x; y)

quasiconvex in x
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Nested sets characterization

f quasiconvex ) sublevel sets S� convex, nested, i.e.,

�1 � �2 ) S�1 � S�2

converse: if T� is a nested family of convex sets, then

f(x) = inff� j x 2 T�g
is quasiconvex.

Engineering interpretation: T� are specs, tighter for
smaller �
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Log-concave functions

f : Rn ! R+ is log-concave (log-convex) if log f is
concave (convex)

Log-convex ) convex; concave ) log-concave

`Modern' de�nition allows log-concave f to take on value
zero, so log f takes on value �1

Examples

� normal density, f(x) = e�(1=2)(x�x0)
T��1(x�x0)

� erfc, f(x) = 2p
�

Z 1
x e�t

2

dt

� indicator function of convex set C:

IC(x) =

8>><
>>:
1 x 2 C
0 x 62 C
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Properties

� sum of log-concave functions not always log-concave
(but sum of log-convex functions is log-convex)

� products

f; g log-concave =) fg log-concave

(immediate)

� integrals

f(x; y) log-concave in x; y =) Z
f(x; y)dy log-concave

� convolutions

f; g log-concave =) Z
f(x� y)g(y)dy log-concave

(immediate from the properties above)
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Log-concave probability densities

Many common probability density functions are
log-concave.

Examples

� normal (� � 0)

f(x) =
1r

(2�)n det �
e�

1

2
(x��x)T��1(x��x)

� exponential(�i > 0)

f(x) =

0
B@ nY
i=1

�i

1
CA e�(�1x1+���+�nxn)

on Rn
+

� uniform distribution on convex (bounded) set C

f(x) =

8>><
>>:
1=� x 2 C
0 x 62 C

where � is Lebesgue measure of C
(i.e., length, area, volume . . . )
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K-convexity

convex cone K � Rm induces generalized inequality �K

f : Rn ! Rm is K-convex if 0 � � � 1 =)
f(�x + (1� �)y) �K �f(x) + (1� �)f(y)

Example. K is PSD cone (called matrix convexity)
let's show that f(X) = X2 is K-convex on
fXjX = XTg, i.e., for � 2 [0; 1],

(�X + (1� �)Y )2 � �X2 + (1� �)Y 2 (1)

for any u 2 Rm, uTX2u = kXuk2 is a (quadratic)
convex fct of X , so

uT (�X + (1� �)Y )2u � �uTX2u + (1� �)uTY 2u

which implies (1)




