Lecture 2
 Convex functions

- convex functions, epigraph
- simple examples, elementary properties
- more examples, more properties
- Jensen's inequality
- quasiconvex, quasiconcave functions
- log-convex and log-concave functions
- K-convexity

Convex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is convex and

$$
\begin{gather*}
x, y \in \operatorname{dom} f, \quad \lambda \in[0,1] \\
\Downarrow \\
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{1}
\end{gather*}
$$

f is concave if $-f$ is convex

'Modern' definition: $f: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$
(but not identically $+\infty$)
f is convex if (1) holds as an inequality in $\mathbf{R} \cup\{+\infty\}$

Epigraph \& sublevel sets

The epigraph of the function f is

$$
\text { epi } f=\{(x, t) \mid x \in \operatorname{dom} f, \quad f(x) \leq t\}
$$

f convex function \Leftrightarrow epi f convex set

The $(\alpha$-) sublevel set of f is

$$
C(\alpha) \triangleq\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

f convex \Rightarrow sublevel sets are convex (converse false)

Differentiable convex functions

f differentiable and convex

$$
\Longleftrightarrow \forall x, x_{0}: f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)
$$

$$
f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)
$$

Interpretation

- 1st order Taylor appr. is a global lower bound on f
- supporting hyperplane to epi f :

$$
\begin{array}{c}
(x, t) \in \operatorname{epi} f \Longrightarrow
\end{array} \underbrace{\left[\begin{array}{c}
\nabla f\left(x_{0}\right) \\
-1
\end{array}\right]^{T}\left[\begin{array}{c}
x-x_{0} \\
t-f\left(x_{0}\right)
\end{array}\right] \leq 0}_{f(x)} \begin{array}{c}
\nabla f\left(x_{0}\right) \\
-1
\end{array}] .
$$

f twice differentiable and convex $\Longleftrightarrow \nabla^{2} f(x) \succeq 0$

Simple examples

- linear and affine functions: $f(x)=a^{T} x+b$
- convex quadratic functions:
$f(x)=x^{T} P x+2 q^{T} x+r$ with $P=P^{T} \succeq 0$
- any norm

Examples on \mathbf{R}

- x^{α} is convex on \mathbf{R}_{+}for $\alpha \geq 1, \alpha \leq 0$; concave for $0 \leq \alpha \leq 1$
- $\log x$ is concave, $x \log x$ is convex on \mathbf{R}_{+}
- $e^{\alpha x}$ is convex
- $|x|, \max (0, x), \max (0,-x)$ are convex
- $\log \int_{-\infty}^{x} e^{-t^{2}} d t$ is concave

Elementary properties

- a function is convex iff it is convex on all lines:

$$
f \text { convex } \Longleftrightarrow f\left(x_{0}+t h\right) \text { convex in } t \text { for all } x_{0}, h
$$

- positive multiple of convex function is convex:

$$
f \text { convex, } \alpha \geq 0 \Longrightarrow \alpha f \text { convex }
$$

- sum of convex functions is convex:

$$
f_{1}, f_{2} \text { convex } \Longrightarrow f_{1}+f_{2} \text { convex }
$$

- extends to infinite sums, integrals:

$$
g(x, y) \text { convex in } x \Longrightarrow \int g(x, y) d y \text { convex }
$$

- pointwise maximum:

$$
f_{1}, f_{2} \text { convex } \Longrightarrow \max \left\{f_{1}(x), f_{2}(x)\right\} \text { convex }
$$

(corresponds to intersection of epigraphs)

- pointwise supremum:

$$
f_{\alpha} \text { convex } \Longrightarrow \sup _{\alpha \in \mathcal{A}} f_{\alpha} \text { convex }
$$

- affine transformation of domain

$$
f \text { convex } \Rightarrow f(A x+b) \text { convex }
$$

More examples

- piecewise-linear functions: $f(x)=\max _{i}\left\{a_{i}^{T} x+b_{i}\right\}$ is convex in x (epi f is polyhedron)
- max distance to any set, $\sup _{s \in S}\|x-s\|$, is convex in x
- $f(x)=x_{[1]}+x_{[2]}+x_{[3]}$ is convex on \mathbf{R}^{n}
($x_{[i]}$ is the i th largest x_{j})
- $f(x)=\left(\prod_{i} x_{i}\right)^{1 / n}$ is concave on \mathbf{R}_{+}^{n}
- $f(x)=\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)^{-1}$ is convex on $\mathcal{P}=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$
- least-squares cost as functions of weights,

$$
f(w)=\inf _{x} \sum_{i} w_{i}\left(a_{i}^{T} x-b_{i}\right)^{2}
$$

is concave in w

Convex functions of matrices

- $\operatorname{Tr} X$ is linear in X; more generally, $\operatorname{Tr} A^{T} X=\sum_{i, j} A_{i j} X_{i j}=\operatorname{vec}(A)^{T} \operatorname{vec}(X)$
- $\log \operatorname{det} X^{-1}$ is convex on $X=X^{T} \succ 0$ Proof: let λ_{i} be the eigenvalues of $X_{0}^{-1 / 2} H X_{0}^{-1 / 2}$

$$
\begin{aligned}
f(t) & \triangleq \log \operatorname{det}\left(X_{0}+t H\right)^{-1} \\
& =\log \operatorname{det} X_{0}^{-1}+\log \operatorname{det}\left(I+t X_{0}^{-1 / 2} H X_{0}^{-1 / 2}\right)^{-1} \\
& =\log \operatorname{det} X_{0}^{-1}-\sum_{i} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

is a convex function of t

- $(\operatorname{det} X)^{1 / n}$ is concave on $X=X^{T} \succ 0, X \in \mathbf{R}^{n \times n}$
- $\lambda_{\max }(X)$ is convex on $X=X^{T}$

Proof: $\lambda_{\max }(X)=\sup _{\|y\|=1} y^{T} X y$

- $\|X\|=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}$ is convex on $\mathbf{R}^{n \times m}$

Proof: $\|X\|=\sup _{\|u\|=1,\|v\|=1} u^{T} X v$

Minimizing over some variables

If $h(x, y)$ is convex in x and y, then

$$
f(x)=\inf _{y} h(x, y)
$$

is convex in x
corresponds to projection of epigraph, $(x, y, t) \rightarrow(x, t)$

Example. If $S \subseteq \mathbf{R}^{n}$ is convex then (min) distance to S,

$$
\operatorname{dist}(x, S)=\inf _{s \in S}\|x-s\|
$$

is convex in x

Example. If $g(x)$ is convex, then

$$
f(y)=\inf \{g(x) \mid A x=y\}
$$

is convex in y.

Proof: find B, C s.t.

$$
\{x \mid A x=y\}=\left\{B y+C z \mid z \in \mathbf{R}^{k}\right\}
$$

so $f(y)=\inf _{z} g(B y+C z)$
'Modern' proof: $f(y)=\inf _{z} g(x)+h(A x-y)$ where

$$
h(z)=\left\{\begin{array}{lc}
0 & \text { if } z=0 \\
+\infty & \text { otherwise }
\end{array}\right.
$$

is convex

Composition - one-dimensional case

$$
f(x)=h(g(x))
$$

is convex if

- g convex; h convex, nondecreasing
- g concave; h convex, nonincreasing

Examples

- $f(x)=\exp g(x)$ is convex if g is convex
- $f(x)=1 / g(x)$ is convex if g is concave, positive
- $f(x)=g(x)^{p}, p \geq 1$, is convex if $g(x)$ convex, positive
- f_{1}, \ldots, f_{n} convex, then $f(x)=-\sum_{i} \log \left(-f_{i}(x)\right)$ is convex on $\left\{x \mid f_{i}(x)<0, i=1, \ldots, n\right\}$

Proof: (differentiable functions, $x \in \mathbf{R}$)

$$
f^{\prime \prime}=h^{\prime \prime}\left(g^{\prime}\right)^{2}+g^{\prime \prime} h^{\prime}
$$

Composition - k-dimensional case

$$
f(x)=h\left(g_{1}(x), \ldots, g_{k}(x)\right)
$$

with $h: \mathbf{R}^{k} \rightarrow \mathbf{R}, g_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if

- h convex, nondecreasing in each arg.; g_{i} convex
- h convex, nonincreasing in each arg.; g_{i} concave
- etc.

Examples

- $f(x)=\max _{i} g_{i}(x)$ is convex if each g_{i} is
- $f(x)=\log \sum_{i} \exp g_{i}(x)$ is convex if each g_{i} is

Proof: (differentiable functions, $n=1$)

$$
f^{\prime \prime}=\nabla h^{T}\left[\begin{array}{c}
g_{1}^{\prime \prime} \\
\vdots \\
g_{k}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{c}
g_{1}^{\prime} \\
\vdots \\
g_{k}^{\prime}
\end{array}\right]^{T} \nabla^{2} h\left[\begin{array}{c}
g_{1}^{\prime} \\
\vdots \\
g_{k}^{\prime}
\end{array}\right]
$$

Jensen's inequality

$$
f: \mathbf{R}^{n} \rightarrow \mathbf{R} \text { convex }
$$

- two points

$$
\begin{gathered}
\lambda \in[0,1] \\
\Downarrow \\
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{gathered}
$$

- more than two points

$$
\begin{gathered}
\lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}=1 \\
\Downarrow\left(\sum_{i} \lambda_{i} x_{i}\right) \stackrel{\sum_{i}}{\leq} \lambda_{i} f\left(x_{i}\right)
\end{gathered}
$$

- continuous version

$$
\begin{array}{cl}
p(x) \geq 0, & \int p(x) d x=1 \\
\Downarrow \\
f\left(\int x p(x) d x\right) \leq \int f(x) p(x) d x
\end{array}
$$

- most general form:

$$
f(\mathbf{E} x) \leq \mathbf{E} f(x)
$$

Interpretation: (zero mean) randomization, dithering increases average value of a convex function

Applications

Many (some people claim most) inequalities can be derived from Jensen's inequality

Example. Arithmetic-geometric mean inequality

$$
a, b \geq 0 \Rightarrow \sqrt{a b} \leq(a+b) / 2
$$

Proof. $f(x)=\log x$ is concave on \mathbf{R}_{+}:

$$
\frac{1}{2}(\log a+\log b) \leq \log \left(\frac{a+b}{2}\right)
$$

Quasiconvex functions

$f: C \rightarrow \mathbf{R}, C$ a convex set, is quasiconvex if every sublevel set $S_{\alpha}=\{x \mid f(x) \leq \alpha\}$ is convex.

can have 'locally flat' regions

f is quasiconcave if $-f$ is quasiconvex, i.e., superlevel sets $\{x \mid f(x) \geq \alpha\}$ are convex.

A function which is both quasiconvex and quasiconcave is called quasilinear.
f convex (concave) $\Rightarrow f$ quasiconvex (quasiconcave)

Examples

- $f(x)=\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $f(x)=\log x$ is quasilinear on \mathbf{R}_{+}
- linear fractional function,

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}
$$

is quasilinear on the halfspace $c^{T} x+d>0$

- $f(x)=\frac{\|x-a\|}{\|x-b\|}$ is quasiconvex on the halfspace $\{x \mid\|x-a\| \leq\|x-b\|\}$
- $f(a)=\operatorname{degree}\left(a_{0}+a_{1} t+\cdots+a_{k} t^{k}\right)$ on \mathbf{R}^{k+1}

Properties

- f is quasiconvex if and only if it is quasiconvex on lines, i.e., $f\left(x_{0}+t h\right)$ quasiconvex in t for all x_{0}, h.
- modified Jensen's inequality: $f: C \rightarrow \mathbf{R}$ quasiconvex if and only if

$$
\begin{gathered}
x, y \in C, \lambda \in[0,1] \\
\Downarrow \\
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}
\end{gathered}
$$

- for f differentiable, f quasiconvex if and only if for all x, y

$$
f(y) \leq f(x) \Rightarrow(y-x)^{T} \nabla f(x) \leq 0
$$

$$
\alpha_{1}<\alpha_{2}<\alpha_{3}
$$

- positive multiples

$$
f \text { quasiconvex, } \alpha \geq 0 \Longrightarrow \alpha f \text { quasiconvex }
$$

- pointwise maximum
f_{1}, f_{2} quasiconvex $\Longrightarrow \max \left\{f_{1}, f_{2}\right\}$ quasiconvex (extends to supremum over arbitrary set)
- affine transformation of domain

$$
f \text { quasiconvex } \Longrightarrow f(A x+b) \text { quasiconvex }
$$

- projective transformation of domain

$$
\begin{aligned}
& \quad f \text { quasiconvex } \Longrightarrow f\left(\frac{A x+b}{c^{T} x+d}\right) \text { quasiconvex } \\
& \text { on } c^{T} x+d>0
\end{aligned}
$$

- composition with monotone increasing function f quasiconvex, g monotone increasing $\Longrightarrow g(f(x))$ quasiconvex
- sums of quasiconvex functions are not quasiconvex in general
- f quasiconvex in $x, y \Longrightarrow g(x)=\inf _{y} f(x, y)$ quasiconvex in x

Nested sets characterization

f quasiconvex \Rightarrow sublevel sets S_{α} convex, nested, i.e.,

$$
\alpha_{1} \leq \alpha_{2} \Rightarrow S_{\alpha_{1}} \subseteq S_{\alpha_{2}}
$$

converse: if T_{α} is a nested family of convex sets, then

$$
f(x)=\inf \left\{\alpha \mid x \in T_{\alpha}\right\}
$$

is quasiconvex.

Engineering interpretation: T_{α} are specs, tighter for smaller α

Log-concave functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$is log-concave (log-convex) if $\log f$ is concave (convex)

Log-convex \Rightarrow convex; concave \Rightarrow log-concave
'Modern' definition allows log-concave f to take on value zero, so $\log f$ takes on value $-\infty$

Examples

- normal density, $f(x)=e^{-(1 / 2)\left(x-x_{0}\right)^{T} \Sigma^{-1}\left(x-x_{0}\right)}$
- erfc, $f(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t$
- indicator function of convex set C :

$$
I_{C}(x)= \begin{cases}1 & x \in C \\ 0 & x \notin C\end{cases}
$$

Properties

- sum of log-concave functions not always log-concave (but sum of log-convex functions is log-convex)
- products

$$
f, g \text { log-concave } \Longrightarrow f g \text { log-concave }
$$

(immediate)

- integrals
$f(x, y)$ log-concave in $x, y \Longrightarrow \int f(x, y) d y$ log-concave
- convolutions

$$
f, g \text { log-concave } \Longrightarrow \int f(x-y) g(y) d y \text { log-concave }
$$

(immediate from the properties above)

Log-concave probability densities

Many common probability density functions are log-concave.

Examples

- normal $(\Sigma \succ 0)$

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- exponential $\left(\lambda_{i}>0\right)$

$$
f(x)=\left(\prod_{i=1}^{n} \lambda_{i}\right) e^{-\left(\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right)}
$$

on \mathbf{R}_{+}^{n}

- uniform distribution on convex (bounded) set C

$$
f(x)= \begin{cases}1 / \alpha & x \in C \\ 0 & x \notin C\end{cases}
$$

where α is Lebesgue measure of C
(i.e., length, area, volume ...)

K-convexity

convex cone $K \subseteq \mathbf{R}^{m}$ induces generalized inequality \preceq_{K}

$$
\begin{aligned}
& f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \text { is } K \text {-convex if } 0 \leq \lambda \leq 1 \Longrightarrow \\
& \quad f(\lambda x+(1-\lambda) y) \preceq_{K} \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

Example. K is PSD cone (called matrix convexity) let's show that $f(X)=X^{2}$ is K-convex on $\left\{X \mid X=X^{T}\right\}$, i.e., for $\lambda \in[0,1]$,

$$
\begin{equation*}
(\lambda X+(1-\lambda) Y)^{2} \preceq \lambda X^{2}+(1-\lambda) Y^{2} \tag{1}
\end{equation*}
$$

for any $u \in \mathbf{R}^{m}, u^{T} X^{2} u=\|X u\|^{2}$ is a (quadratic) convex fct of X, so

$$
u^{T}(\lambda X+(1-\lambda) Y)^{2} u \leq \lambda u^{T} X^{2} u+(1-\lambda) u^{T} Y^{2} u
$$

which implies (1)

