Convex optimization problems

Lecture 3

Convex optimization problems

e abstract form problem

e standard form problem

e convex optimization problem

e standard form with generalized inequalities
e mulitcriterion optimization

e rstriction and relaxation
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Optimization problem (abstract form)

minimize f(x)
subject to v € C

where f : R" -+ R, ' C dom f

® 1 Is optimization variable

e f is objective or cost function

e (' is feasible set or constraint set

e point x is feasible if x € C

e problem is feasible if C' # ()

e problem is unconstrained if C' = R"

e optimal value is f* = :L}Ielgf(flf) (can be —o0)
convention: f* = +o0 if infeasible

e optimal point: x € C s.t. f(x) = f*

e can maximize f by minimizing — f

called ‘abstract’ since we don't say how C' is described
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Example:

minimize 1+ o
subject to x1 > 0, 29 > 0, x119 > 1

o feasible set C' is half-hyperboloid
e optimal value is f* =2

e only optimal point is z* = (1, 1)
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Optimization problem (standard form)

minimize  fy(x)

where f;, g, : R" — R

o feasible set is C' = {z|fi(x) <0, g;/(z) =0}
e f; are inequality constraint functions
e g, are equality constraint functions
e constraint 7 is active at z € C'if fi(z) =0
e point x is called strictly feasible if
file) <0, i=1,....m, g(z)=0,i=1,...,p
i.e., all (inequality) constraints are inactive

e problem is strictly feasible if there is a strictly feasible
point

e can also have strict inequality constraints
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Example:

minimize 1+ o
subject to x1 > 0, 29 > 0, x119 > 1

to put in standard form take fy(x) = 1 + o,
filz) =—z1, folz)=—m2, [f3(z)=1— 2129

note
e third constraint implies first two cannot be active

e first constraint is redundant: second and third imply it

can also put in standard form with fo(z) = z1 + x9,

fl(flf) = max{ O, — X1, — X9, 1 — L1 }

e feasible set exactly the same
e one constraint function intead of three

e this standard form problem is not strictly feasible
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Feasibility problem
suppose objective fy =0, so
= 0 ifC#0
+oo if C' =1
thus, problem is really to
e either find z € C,
e or determine that C' = ()
i.e., solve the inequality / equality system
fil) <0, 1=1,....m, gi(x)=0,i=1,...,p

or determine that it is inconsistent
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Convex optimization problem

abstract form problem

minimize f(x)
subject to v € C

is convex if C' and f are convex (set, fct)

e problem is quasiconvex if C' is convex and [ is

quasiconvex

e maximizing concave f over convex C' is convex

optimization problem

standard form problem

minimize  fy(x)

subject to fi(z) <0, i=1,...,m
gil) =0, 1=1,...,p
is convex if fy,..., f,, convex, gi,...,g, affine

often written as
minimize  fy(x)
subject to fi(z) <0, i=1,...,m
Ax =b

where A € R’
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Example. problem above,

minimize 1+ o
subject to —z1 < 0,
—x3 <0,
1 — L1 S 0

has convex objective and feasible set, hence is convex
problem in abstract form

It is not a standard form cvx opt problem since

fg(flf) =1 - L1

Is not convex (it is quasiconvex)

problem is easily cast as std form cvx opt problem, e.g.,

minimize 1+ o
subject to —z1 < 0,
—I2 S 07

1 — A/ L1L9 S 0
(1 — \/T1T5 is convex on R?)

many other ways, e.g., replace third constraint with

—logz; —logxs <0
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Example. f; all affine yields linear program

minimize ¢l + dg
subject to cla +d; <0, i=1,....,m
Arx =b

which i1s a convex optimization problem

Example. minimum norm approximation with limits on
variables

minimize ||Ax — b||
subjectto [; < zx; <wu;, 1=1,....n

IS convex

Example. minimum entropy with lin. equal. constraints
minimize Y z;log z;
subject to :IZ:Z >0,1=1,....n
Yr =1
12451: =0

IS convex

(more on these later)
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Local and global optimality

x € C'is locally optimal if it satisfies
yel ly—z|<R = fly) > [(z)

for some K > 0

c.f. (globally) optimal, which means z € C,
yel = fly) = f(z)

for cvx opt problems, any local solution is also global

proof:
e suppose x is locally optimal, but y € C, f(y) < f(z)

e take small step from = towards vy, i.e.,
2=y + (1 — X)a with A > 0 small

e 2 is near z, with f(2) < f(x); contradicts local
optimality
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An optimality criterion

suppose [ is differentiable in cvx problem
minimize f(x)
subject to v € C
then z € C' is optimal iff

yeC = V() (y—z)>0

@ hence z € C, Vf(z) =0 implies = optimal

e for unconstrained problems, x is optimal iff

Vf(x)=0

contour lines of f

Interpretations:

e means —V f(x) defines supporting hyperplane for C
at x

e if you move from x towards any feasible ¢, f does not
decrease
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Epigraph form

write standard form problem as

minimize ¢

subject to fy(z) —t <0,
file) <0, i=1,....,m
gi(x)=0,i=1,...,p

e variables are (z, t)
e m + 1 inequality constraints
e objective is linear: t = ¢! ,(z,1)

e if original problem is cvx, so is epigraph form

f(x)

/

linear objective is ‘universal’ for convex optimization
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Std form with generalized inequalities

convex optimization problem in standard form with
generalized inequalities:

minimize  fo(x)
subject to fi <. 0, i =1,...,L
Ar =10

where:
o <k, are generalized inequalities on R""

o fi: R" — R"" are K;-convex

Example. semidefinite programming

minimize ¢!z
subject to Ag+ 2141 +---+x,4, <0

where A; = A, € RP*?

e one generalized inequality constraint (L = 1)
e /{1 is PSD cone; < is matrix inequality

e f1 is affine, hence matrix convex
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How f,, g; are described

analytical form
functions can have analytical form, e.qg.,

flx)=a'Pr+2¢"x +r

f i1s specified by giving the problem data, coefficients, or
parameters, e.q.

P=PreR™ ¢eR" reR

oracle form
functions can be given by oracle or subroutine that, given

z, computes f(x) (and maybe V f(z), V*f(z), ...)

e oracle model can be useful even if f has analytic
form, e.g., linear but sparse

e how [ given affects choice of algorithm, storage
required to specify problem, etc.
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Some hard problems

‘Slight’” modification of convex problem can be very hard

e convex maximization, concave minimization, e.gq.

maximize ||z||
subject to Az <b

e nonlinear equality constraints, e.g.

minimize ¢!z

subject to CCTPZ'CC—FC]Z-TCC—FTZ':O, 1=1,...,. K

® minimizing over non-convex sets, e.g., integer
constraints

find T
such that Az <b, z; € {0,1}
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Multicriterion optimization

Vector objective

F(x) = (fi(x),..., [n(z))

f11 e fNZRn—>R
(can include constraint C C R" ...)

f; called objective functions: roughly speaking, want all
f; small

Family of specifications indexed by t € R™:
F(x) <t
e, filr)<t,i=1,...,N.

Achievable specification: ¢ s.t. F'(x) < ¢ feasible
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Achievable specifications

set of achievable objectives:

A={teR" |Jzst. F(z) <t}

A (achievable specs)

if f; are convex then A is convex

A is projection of vector function epigraph
epi(F) = {(z,t) e R" x R" |F(z) < t}

on {-space.

boundary of A is called (optimal) tradeoff surface
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Pareto optimality

x dominates (is better than) z if F'(x) < F(Z) and
F(z) 4 F(2)

i.€., T Is no worse than Z in any objective, and better in
at least one

x( Is Pareto optimal if no x dominates it

/achievable specs

|
“\specs tighter than F(xg)

roughly, x( Pareto optimal means F'(x() is on tradeoff

surface
z( Pareto optimal = F'(z() € 0.A
(converse not quite true)
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Pareto problem: find Pareto-optimal z

Real (but more vague) engineering problem:
search /explore /characterize tradeoff surface, €e.g.:

e ‘can reduce f5 below 0.1, but only at huge cost in f;
and f5'

e ‘can pretty much minimize f3 independently of other
objectives’

e 'f1 and [, tradeoff strongly for f1 <1, fo, <2

strong tradeoff

weak tradeoff
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Scalarization

multicriterion problem with fi,..., fxy
weighted sum of objectives: choose weights w; > 0, solve
minimize Y w; f;(z)
1

which is the same as

minimize w!t

subject to t € A

/achievable specs

> w;t; = constant
i

F l‘o)

e solution z is Pareto optimal

e for many cvx problems, all Pareto optimal points can
be found this way, as weights vary over Rf
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halfspace of specifications {¢ | w!t < w! F(x)} are
unachievable (i.e., supports A at z)

/achievable specs

F l‘o)

]

\guaranteed unachievable specs
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Restriction and relaxation

original problem, with optimal value f™:

minimize f(x)
subject to v € C

new problem, with optimal value f*:

minimize f(x)
subject to v € C

new problem is
e relaxation (of original) if C' D C
(in which case f* < f*)
e restriction if C' C C
(in which case f* > f*)

~

Example. f is convex, C' is nonconvex; ' = Co(C
relaxation is convex problem that gives lower bound for
original, nonconvex problem



