Lecture 5

Linear and quadratic problems and Semidefinite
programming (SDP)

e linear programming

e examples and applications

e linear fractional programming

e quadratic optimization problems

e (quadratically constrained) quadratic
programming

e examples and applications

e Semidefinite programming

e applications



Linear and quadratic problems

Linear programming (LP)

abstract form: minimize linear obj. over polyhedron P:
minimize ¢’z

subject to x € P

cTz constant

‘standard’ form

minimize clz

subject to F'x =g
x>0

(widely used in LP literature & software)

variations, e.g.,

maximize clz

subject to Az <b
Fax=g
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Force/moment generation with thrusters

e rigid body with center of mass at origin p = 0 € R?

e 1 forces with magnitude u;, acting at p; = (Piz, Piy),
in direction 0;

(pima pzy)

n
resulting horizontal force: F,, = > w;cosb;
i=1

n
resulting vertical force: I, = > u;sin6;
i=1

n
resulting torque: 1" = ¥ p;,u; cos8; — p;,u;sin 0;
i=1

force limits: 0 < u; <1 (thrusters)
fuel usage: w1 + - - + uy,

Problem: Find thruster forces u; that yield given desired
forces and torques and minimize fuel usage (if feasible)
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can be expressed as LP:
minimize 17w
subject to Fu = fdes
OS’LLZS 1, ”[::1,...,72,

where
cos 01 cos b,
F = sin 04 sin 6,
| p1ycosth — pigsinty -+ ppycosb, — ppgsind,
des [ r1~des 7odes des] T
o = |Fie Fle T
1=[11---1]"
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Converting LP to ‘standard’ form

e inequalities as equality constraints: write al x < b; as

al T+ s; = b;

s; 1s called slack variable associated with aiTx < b,

e unconstrained variables: write z; € R as
r; =z, —x;

_|_ —
x,x; >0

Example. Thruster problem in ‘standard’ form

minimize |17 0 } ¢
: S

subject to Z > 0
F0llu B fdes
I I||s| |1
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Piecewise-linear minimization

T

minimize max (c; x + d;)
1
subject to Az <b

express as
minimize ©
subject to ¢!z +d; <t
Ax <b

an LP in variables z € R", t € R
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{~o- and /{-norm approximation

Constrained /.- (Chebychev) approximation

minimize ||Az — bl|
subject to Flx < g

write as
minimize ¢
subject to Ax — b < t1
Axr — b > —t1
Fx =g

Constrained /;-approximation

minimize ||Ax — b
subject to Flx < g

write as
minimize 1Ty
subject to Ax — b <y
Ar —b > —y
Fr=<g
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Extensions of thruster problem

® opposing thruster pairs
minimize ¥ |u|

7
subject to [y = fdes
|uz|§1, 7::1,...,71

can express as LP

e given f9s

minimize ||Fu — 9
subjectto 0 < u; <1, 1=1,....,n

can express as LP

e given fds

minimize # thrusters on
subject to [y = fdes
OS’LLZS 1, 7::1,...,72,

can not express as LP
(# thrusters on is quasiconcave!)
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Design centering

Find largest ball inside a polyhedron
P={z|az<b,i=1,...,m}

center is called Chebychev center

e

ball {z.+ u | ||u|| < r} lies in P if and only if
sup{al z.+alu | ||Jul| <r} <b, i=1,...,m,
1.€.,

aiTa:c%—rHaiH Sbl, ’iZl,...,m

Hence, finding Chebychev center is an LP:

maximize 7
subject to a) x. + 7||a;l| < b, i=1,...,m



Linear and quadratic problems

Linear fractional programming

L cle+d
minimize m
subject to Ax <b

ffo+g>0

e objective function is quasiconvex
e sublevel sets are polyhedra

e like LP, can be solved very efficiently

extension:

L CZTZE -+ dz
minimize  1ax T
1=1,....K fz T+ g;

subject to Ax < b
fle+g >0 i=1,....K

e objective function is quasiconvex

e sublevel sets are polyhedra



Linear and quadratic problems

Nonconvex extensions of LP

Boolean LP or zero-one LP:

minimize clz

subject to Az <b

Frx=g
T; € {O, 1}
integer LP:
T

minimize c'x

subject to Az <b
Fx=g
r;, € 1

these are in general
® not convex problems

e extremely difficult to solve
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Quadratic functions and forms

definitions:

e guadratic function

f(x) = ' Pr+2¢"z +r
T
P q

q' T

x
1

x
1

convex if and only if P > 0

e quadratic form f(z) = 2! Px
convex if and only if P > 0

e Euclidean norm f(z) = ||[Az + b||



Linear and quadratic problems 4 - 17

Minimizing a quadratic function

minimize f(x) = ' Pz +2¢'z +r

nonconvex case (P % 0): unbounded below
(7" = ~oo)

Proof: take z = tv, t — 00, where Pv = \v, A <0

convex case (P > 0):
z is optimal iff V f(z) =2Px +2¢ =0

two cases:
e g € range(P): f* > —o0
e g ¢ range(P): unbounded below (f* = —0)

important special case, P > O:
unique optimal point Zo, = —P~1¢;
optimal value f* =r — ¢’ P g
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Least-squares problems

Minimize Euclidean norm
minimize ||Ax — b||
(A =lay---ay full rank, skinny)

geometrically: project b on span({ay,...,a,})

b

/ span({ay, ..., an})

\J x|s

0

solution: zjs = (AT A)71ATD

Minimum norm solution

minimize ||z||
subject to Ax =10

(A full rank, fat)

{z | Ax = b}

o« Tmn

solution: xp,, = AT(AAD)~1D
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Minimizing a linear function with
quadratic constraint

minimize ¢z

subject to 21 Az <1

Lopt

(A=Al = 0)

Topt = —A™e/V T A-le

Proof. Change of variables y = A0 6= A1/
minimize ¢ly
subject to yly < 1

Optimal solution: yop: = —¢/||€|.
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Quadratic programming

quadratic objective, linear inequalities

minimize x! Pz +2¢'z +r
subject to Az <b

convex optimization problem if P > 0
very hard problem if P ¥ (
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QCQP and SOCP

quadratically constrained quadratic programming

(QCQP):
minimize ! Pyx + 2¢x + ry
subject to 2! Bx +2¢l v +1r; <0, i=1,...,L
e convex if P, >0,:=0,...,L

e nonconvex QCQP very difficult

second-order cone programming (SOCP):

minimize clz

subject to || Az +bi|| <elx+d;, i=1,...,L

)

includes QCQP (QP, LP)
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Beamforming

e omnidirectional antenna elements at positions
2
DP1,---,DPn € R

e plane wave incident from angle -
expj(k(0)'p — wt), k() = —[cosf sinf]"
(1 =v-1)

e output of element i: y;(6) = exp(7k(0)!p;)
e output of array is weighted sum y(0) = 5 w;y;(6)
i=1
e G(6) £ |y(A)| antenna gain pattern
design variables: x = [Re w! Im w!]?
(antenna array weights or shading coefficients)
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Sidelobe level minimization

make G(0) small for |0 — Oy | >

® 0., target direction

e 2a: beamwidth

Via least-squares (discretize angles)
minimize Y G(6;)
subject to Y(Oar) = 1

(sum over angles outside beam)

least-squares problem with two linear equality constraints

\ Qtar = 30°

o 10°
sidel




Linear and quadratic problems

Via QCQP

minimize max; G(6;)
subject to y(fiar) =1

(max over angles outside beam)

Quadratically constrained quadratic program

minimize ¢
subject to G(0;) <t
y(etar) =1
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Extensions

e (G(Ay) = 0 (null in direction 6)
e w is real (amplitude only shading)
e |w;| <1 (attenuation only shading)

e minimize o ¥ |w;|* (thermal noise power in ¥)
7

® minimize beamwidth given a maximum sidelobe level

e maximize number of zero weights
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Semidefinite programming (SDP)

minimize clz

subject to F(z) <0
where

Flz)=F+zF+- +z,F,, F=F R’

e SDP is cvx opt problem in generalized standard form
(= is matrix inequality)

e LMI F'(x) < 0 is equivalent to a set of polynomial
inequalities in = (nonnegative diagonal minors of —F')

e multiple LMIs can be combined into one (block

diagonal) LMI

cf. LP, written as
minimize clx
subject to G(z) <0
where

(and =< is componentwise inequality)
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LP as SDP

minimize clz

subject to Ax <b

can be expressed as SDP

minimize clz

subject to diag(Axz —b) <0

since Av —b =20 & diag(Az —b) <0
(that's tricky notation!)

Maximum eigenvalue minimization
minimize, Amax(A(x))

A(CIZ) = A() + 5131141 + -+ Cl?mAm, Al — AZT
SDP with variables x € R™ and t € R.:
minimize ¢
subject to A(z) —tI <0
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Schur complements

A B
BT C

S =C — B"A"'B is the Schur complement of A in X
(provided det A # 0)

X =Xx!=

® arises In many contexts

e useful to represent nonlinear convex constraints as

LMls

Facts: (homework)
e X ~0Oifandonlyif A= 0and S =0
oif A>=0,then X > 0ifandonlyif S >0

Example. (convex) quadratic inequality
(Az +b)"(Az +b) — 'z —d <0
is equivalent to the LMI

I Az +b
(Az +b)t clz +d =0



Geometric and semidefinite programming

QCQP as SDP

The quadratically constrained quadratic program

minimize fy(x)
subject to fi(z) <0, ¢=1,...,L

where f;(z) £ (A;z +b)T(Aiz +b) — cl'z — d;

can be expressed as SDP (in x and t)

minimize ¢
1 on + b() ] t 07

’
SUDIECL O Aoz + bo)T T+ do + ¢

1 AZZU + bl
(Aiz + b))t clz +d;

extends to problems over second-order cone:
|Az + 0] <e'z+d

is equivalent to LMI

(el +d)I Az +b -
(Az +0)! el +d| —

]zo, i=1,...



Geometric and semidefinite programming

Simple nonlinear example

(")

dlx

subject to Ax <b

minimize

(assume d''z > 0 whenever Az < b)

1. equivalent problem with linear objective:
minimize ¢
subject to Az <b
(c'z)?

dl'z

t— >0

2. SDP (in z, t) using Schur complement:
minimize ©
diag(b— Ax) 0 0
subject to 0 t clx| >0
0 cle d'x



Geometric and semidefinite programming

Matrix norm minimization

minimize || A(x)||

where
Alz) = Ay + 1A + - + 2,4, A€ R
and || A|| = (Amax(ATA))"

can cast as SDP;
minimize ¢
tl  Ax)

AT ¢ | =Y

subject to
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Measurements with unknown sensor
noise variance

Random vectors y = x + v € R*

e r: random vector of interest,

Erz=7, E@z—-2)(z—-2)l =X

e v: measurement noise, independent of z,
Ev=0 Ew! =F diagonal but otherwise
unknown

e y: measured data, Ey = 7,
Ey—-z)y—2) =X=X+F

take many samples of y = z, 3 known

covariance X is unknown, but lies in (convex) set

S={Y—D|D>0diagonal,> — D = 0}

can bound linear function of X by solving SDP over S

Example. can bound variance of ¢’z by solving SDP:
c'Sc > E(c'z — c'z)?

> inf{c'Sc—c¢"'Dc| D diag., D =0, £ — D > 0}



Geometric and semidefinite programming

Special case. ‘educational testing problem’ (c

e x: ‘ability’ of a random student on £ tests
e y: score of a random student on k tests

e v: testing error of k tests

e 172: total ability on tests

e 17y: total test score

e 1731: variance in total ability

e 1731: variance in total score

e reliability of the test:
1T21__1 Tr F
1731 1731

can bound reliability by solving SDP:

maximize Tr D
subject to D diagonal, D > 0
Y —D >0

1)

516
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