Lecture 5

Linear and quadratic problems and Semidefinite programming (SDP)

- linear programming
- examples and applications
- linear fractional programming
- quadratic optimization problems
- (quadratically constrained) quadratic programming
- examples and applications
- Semidefinite programming
- applications

Linear programming (LP)

abstract form: minimize linear obj. over polyhedron \mathcal{P} :
minimize $c^{T} x$
subject to $x \in \mathcal{P}$

‘standard' form
minimize $c^{T} x$
subject to $F x=g$
$x \succeq 0$
(widely used in LP literature \& software)
variations, e.g.,

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& F x=g
\end{array}
$$

Force/moment generation with thrusters

- rigid body with center of mass at origin $p=0 \in \mathbf{R}^{2}$
- n forces with magnitude u_{i}, acting at $p_{i}=\left(p_{i x}, p_{i y}\right)$, in direction θ_{i}

resulting horizontal force: $F_{x}=\sum_{i=1}^{n} u_{i} \cos \theta_{i}$
resulting vertical force: $F_{y}=\sum_{i=1}^{n} u_{i} \sin \theta_{i}$
resulting torque: $T=\sum_{i=1}^{n} p_{i y} u_{i} \cos \theta_{i}-p_{i x} u_{i} \sin \theta_{i}$
force limits: $0 \leq u_{i} \leq 1$ (thrusters) fuel usage: $u_{1}+\cdots+u_{n}$

Problem: Find thruster forces u_{i} that yield given desired forces and torques and minimize fuel usage (if feasible)

can be expressed as LP:

minimize $1^{T} u$
subject to $F u=f^{\text {des }}$

$$
0 \leq u_{i} \leq 1, i=1, \ldots, n
$$

where

$$
\left.\left.\begin{array}{rl}
F & =\left[\begin{array}{ccc}
\cos \theta_{1} & \cdots & \cos \theta_{n} \\
\sin \theta_{1} & \cdots & \sin \theta_{n} \\
p_{1 y} \cos \theta_{1}-p_{1 x} \sin \theta_{1} & \cdots & p_{n y} \cos \theta_{n}-p_{n x} \sin \theta_{n}
\end{array}\right] \\
f^{\text {des }} & =\left[\begin{array}{lll}
F_{x}^{\text {des }} F_{y}^{\mathrm{des}} T^{\mathrm{des}}
\end{array}\right]^{T} \\
\mathbf{1} & =\left[\begin{array}{lll}
1 & 1 & \cdots
\end{array}\right]
\end{array}\right]^{T}\right]
$$

Converting LP to 'standard' form

- inequalities as equality constraints: write $a_{i}^{T} x \leq b_{i}$ as

$$
\begin{aligned}
& a_{i}^{T} x+s_{i}=b_{i} \\
& s_{i} \geq 0
\end{aligned}
$$

s_{i} is called slack variable associated with $a_{i}^{T} x \leq b_{i}$

- unconstrained variables: write $x_{i} \in \mathbf{R}$ as

$$
\begin{gathered}
x_{i}=x_{i}^{+}-x_{i}^{-} \\
x_{i}^{+}, x_{i}^{-} \geq 0
\end{gathered}
$$

Example. Thruster problem in 'standard' form

$$
\begin{aligned}
\operatorname{minimize} & {\left[\begin{array}{ll}
\mathbf{1}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
u \\
s
\end{array}\right] } \\
\text { subject to } & {\left[\begin{array}{l}
u \\
s
\end{array}\right] \succeq 0 } \\
& {\left[\begin{array}{cc}
F & 0 \\
I & I
\end{array}\right]\left[\begin{array}{l}
u \\
s
\end{array}\right]=\left[\begin{array}{c}
f^{\text {des }} \\
\mathbf{1}
\end{array}\right] }
\end{aligned}
$$

Piecewise-linear minimization

$\operatorname{minimize} \max _{i}\left(c_{i}^{T} x+d_{i}\right)$
subject to $A x \preceq b$

express as

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & c_{i}^{T} x+d_{i} \leq t \\
& A x \preceq b
\end{array}
$$

an LP in variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$

$\ell_{\infty^{-}}$and ℓ_{1}-norm approximation

Constrained $\ell_{\infty^{-}}$(Chebychev) approximation

$$
\text { minimize }\|A x-b\|_{\infty}
$$

subject to $F x \preceq g$
write as

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A x-b \preceq t \mathbf{1} \\
& A x-b \succeq-t \mathbf{1} \\
& F x \preceq g
\end{array}
$$

Constrained ℓ_{1}-approximation

$$
\begin{aligned}
& \text { minimize }\|A x-b\|_{1} \\
& \text { subject to } F x \preceq g
\end{aligned}
$$

write as

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} y \\
\text { subject to } & A x-b \preceq y \\
& A x-b \succeq-y \\
& F x \preceq g
\end{array}
$$

Extensions of thruster problem

- opposing thruster pairs

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i}\left|u_{i}\right| \\
\text { subject to } & F u=f^{\text {des }} \\
& \left|u_{i}\right| \leq 1, \quad i=1, \ldots, n
\end{array}
$$

can express as LP

- given $f^{\text {des }}$,
$\operatorname{minimize} \quad\left\|F u-f^{\text {des }}\right\|_{\infty}$
subject to $0 \leq u_{i} \leq 1, \quad i=1, \ldots, n$
can express as LP
- given $f^{\text {des }}$,
minimize \# thrusters on
subject to $F u=f^{\text {des }}$

$$
0 \leq u_{i} \leq 1, \quad i=1, \ldots, n
$$

can not express as LP
(\# thrusters on is quasiconcave!)

Design centering

Find largest ball inside a polyhedron

$$
\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}
$$

center is called Chebychev center

ball $\left\{x_{c}+u \mid\|u\| \leq r\right\}$ lies in \mathcal{P} if and only if

$$
\sup \left\{a_{i}^{T} x_{c}+a_{i}^{T} u \mid\|u\| \leq r\right\} \leq b_{i}, \quad i=1, \ldots, m
$$

i.e.,

$$
a_{i}^{T} x_{c}+r\left\|a_{i}\right\| \leq b_{i}, \quad i=1, \ldots, m
$$

Hence, finding Chebychev center is an LP:
maximize r
subject to $a_{i}^{T} x_{c}+r\left\|a_{i}\right\| \leq b_{i}, \quad i=1, \ldots, m$

Linear fractional programming

$$
\begin{array}{ll}
\text { minimize } & \frac{c^{T} x+d}{f^{T} x+g} \\
\text { subject to } & A x \preceq b \\
& f^{T} x+g>0
\end{array}
$$

- objective function is quasiconvex
- sublevel sets are polyhedra
- like LP, can be solved very efficiently

extension:

$$
\begin{aligned}
\operatorname{minimize} & \max _{i=1, \ldots, K} \frac{c_{i}^{T} x+d_{i}}{f_{i}^{T} x+g_{i}} \\
\text { subject to } & A x \preceq b \\
& f_{i}^{T} x+g_{i}>0, i=1, \ldots, K
\end{aligned}
$$

- objective function is quasiconvex
- sublevel sets are polyhedra

Nonconvex extensions of LP

Boolean LP or zero-one LP:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& F x=g \\
& x_{i} \in\{0,1\}
\end{array}
$$

integer LP:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& F x=g \\
& x_{i} \in \mathbf{Z}
\end{array}
$$

these are in general

- not convex problems
- extremely difficult to solve

Quadratic functions and forms

definitions:

- quadratic function

$$
\begin{aligned}
f(x) & =x^{T} P x+2 q^{T} x+r \\
& =\left[\begin{array}{l}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P & q \\
q^{T} & r
\end{array}\right]\left[\begin{array}{c}
x \\
1
\end{array}\right]
\end{aligned}
$$

convex if and only if $P \succeq 0$

- quadratic form $f(x)=x^{T} P x$
convex if and only if $P \succeq 0$
- Euclidean norm $f(x)=\|A x+b\|$

Minimizing a quadratic function

$$
\operatorname{minimize} f(x)=x^{T} P x+2 q^{T} x+r
$$

nonconvex case ($P \nsucceq 0$): unbounded below $\left(f^{\star}=-\infty\right)$

Proof: take $x=t v, t \rightarrow \infty$, where $P v=\lambda v, \lambda<0$
convex case $(P \succeq 0)$:
x is optimal iff $\nabla f(x)=2 P x+2 q=0$
two cases:

- $q \in \operatorname{range}(P): f^{\star}>-\infty$
- $q \notin \operatorname{range}(P)$: unbounded below $\left(f^{\star}=-\infty\right)$
important special case, $P \succ 0$:
unique optimal point $x_{\mathrm{opt}}=-P^{-1} q$;
optimal value $f^{\star}=r-q^{T} P^{-1} q$

Least-squares problems

Minimize Euclidean norm

$$
\operatorname{minimize}\|A x-b\|
$$

$$
\left(A=\left[a_{1} \cdots a_{n}\right] \text { full rank, skinny }\right)
$$

geometrically: project b on $\operatorname{span}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$

solution: $x_{\mathrm{ls}}=\left(A^{T} A\right)^{-1} A^{T} b$

Minimum norm solution

$$
\begin{aligned}
& \operatorname{minimize} \quad\|x\| \\
& \text { subject to } A x=b
\end{aligned}
$$

(A full rank, fat)

solution: $x_{\mathrm{mn}}=A^{T}\left(A A^{T}\right)^{-1} b$

Minimizing a linear function with quadratic constraint

minimize $c^{T} x$
subject to $x^{T} A x \leq 1$
$\left(A=A^{T} \succ 0\right)$

$$
x_{\mathrm{opt}}=-A^{-1} c / \sqrt{c^{T} A^{-1} c}
$$

Proof. Change of variables $y=A^{1 / 2} x, \tilde{c}=A^{-1 / 2} c$

$$
\begin{aligned}
& \text { minimize } \tilde{c}^{T} y \\
& \text { subject to } y^{T} y \leq 1
\end{aligned}
$$

Optimal solution: $y_{\mathrm{opt}}=-\tilde{c} /\|\tilde{c}\|$.

Quadratic programming

quadratic objective, linear inequalities
minimize $\quad x^{T} P x+2 q^{T} x+r$
subject to $A x \preceq b$

convex optimization problem if $P \succeq 0$ very hard problem if $P \nsucceq 0$

QCQP and SOCP

quadratically constrained quadratic programming (QCQP):
minimize $\quad x^{T} P_{0} x+2 q_{0}^{T} x+r_{0}$
subject to $x^{T} P_{i} x+2 q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, L$

- convex if $P_{i} \succeq 0, i=0, \ldots, L$
- nonconvex QCQP very difficult
second-order cone programming (SOCP):
minimize $c^{T} x$
subject to $\left\|A_{i} x+b_{i}\right\| \leq e_{i}^{T} x+d_{i}, \quad i=1, \ldots, L$
includes QCQP (QP, LP)

Beamforming

- omnidirectional antenna elements at positions $p_{1}, \ldots, p_{n} \in \mathbf{R}^{2}$
- plane wave incident from angle θ :

$$
\begin{aligned}
& \quad \exp j\left(k(\theta)^{T} p-\omega t\right), \quad k(\theta)=-[\cos \theta \sin \theta]^{T} \\
& (j=\sqrt{-1})
\end{aligned}
$$

- output of element $i: y_{i}(\theta)=\exp \left(j k(\theta)^{T} p_{i}\right)$
- output of array is weighted sum $y(\theta)=\sum_{i=1}^{n} w_{i} y_{i}(\theta)$
- $G(\theta) \triangleq|y(\theta)|$ antenna gain pattern
design variables: $x=\left[\boldsymbol{\operatorname { R e }} w^{T} \boldsymbol{\operatorname { I m }} w^{T}\right]^{T}$ (antenna array weights or shading coefficients)

Sidelobe level minimization

make $G(\theta)$ small for $\left|\theta-\theta_{\operatorname{tar}}\right|>\alpha$

- $\theta_{\text {tar }}$: target direction
- 2α : beamwidth

Via least-squares (discretize angles)

$$
\begin{array}{ll}
\text { minimize } & \sum_{i} G\left(\theta_{i}\right)^{2} \\
\text { subject to } & y\left(\theta_{\mathrm{tar}}\right)=1
\end{array}
$$

(sum over angles outside beam)
least-squares problem with two linear equality constraints

Via QCQP

$\operatorname{minimize} \max _{i} G\left(\theta_{i}\right)$
subject to $y\left(\theta_{\mathrm{tar}}\right)=1$
(max over angles outside beam)

Quadratically constrained quadratic program
minimize t
subject to $G\left(\theta_{i}\right) \leq t$

$$
y\left(\theta_{\mathrm{tar}}\right)=1
$$

Extensions

- $G\left(\theta_{0}\right)=0\left(\right.$ null in direction $\left.\theta_{0}\right)$
- w is real (amplitude only shading)
- $\left|w_{i}\right| \leq 1$ (attenuation only shading)
- minimize $\sigma^{2} \sum_{i}\left|w_{i}\right|^{2}$ (thermal noise power in y)
- minimize beamwidth given a maximum sidelobe level
- maximize number of zero weights

Semidefinite programming (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F(x) \preceq 0
\end{array}
$$

where

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}, \quad F_{i}=F_{i}^{T} \in \mathbf{R}^{p \times p}
$$

- SDP is cvx opt problem in generalized standard form (\preceq is matrix inequality)
- LMI $F(x) \preceq 0$ is equivalent to a set of polynomial inequalities in x (nonnegative diagonal minors of $-F$)
- multiple LMIs can be combined into one (block diagonal) LMI
cf. LP, written as

$$
\begin{aligned}
& \operatorname{minimize} c^{T} x \\
& \text { subject to } G(x) \preceq 0
\end{aligned}
$$

where

$$
G(x)=g_{0}+x_{1} g_{1}+\cdots+x_{n} g_{n}
$$

(and \preceq is componentwise inequality)

LP as SDP

$$
\begin{aligned}
& \operatorname{minimize} \quad c^{T} x \\
& \text { subject to } A x \preceq b
\end{aligned}
$$

can be expressed as SDP
$\operatorname{minimize} c^{T} x$
subject to $\operatorname{diag}(A x-b) \preceq 0$
since $A x-b \preceq 0 \Leftrightarrow \operatorname{diag}(A x-b) \preceq 0$
(that's tricky notation!)

Maximum eigenvalue minimization

$$
\operatorname{minimize}_{x} \lambda_{\max }(A(x))
$$

$A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m}, A_{i}=A_{i}^{T}$
SDP with variables $x \in \mathbf{R}^{m}$ and $t \in \mathbf{R}$:
minimize t
subject to $A(x)-t I \preceq 0$

Schur complements

$$
X=X^{T}=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]
$$

$S=C-B^{T} A^{-1} B$ is the Schur complement of A in X (provided $\operatorname{det} A \neq 0$)

- arises in many contexts
- useful to represent nonlinear convex constraints as LMIs

Facts: (homework)

- $X \succ 0$ if and only if $A \succ 0$ and $S \succ 0$
- if $A \succ 0$, then $X \succeq 0$ if and only if $S \succeq 0$

Example. (convex) quadratic inequality

$$
(A x+b)^{T}(A x+b)-c^{T} x-d \leq 0
$$

is equivalent to the LMI

$$
\left[\begin{array}{cc}
I & A x+b \\
(A x+b)^{T} & c^{T} x+d
\end{array}\right] \succeq 0
$$

QCQP as SDP

The quadratically constrained quadratic program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, L
\end{array}
$$

where $f_{i}(x) \triangleq\left(A_{i} x+b\right)^{T}\left(A_{i} x+b\right)-c_{i}^{T} x-d_{i}$
can be expressed as SDP (in x and t) minimize t
subject to $\left[\begin{array}{cc}I & A_{0} x+b_{0} \\ \left(A_{0} x+b_{0}\right)^{T} & c_{0}^{T} x+d_{0}+t\end{array}\right] \succeq 0$,

$$
\left[\begin{array}{cc}
I & A_{i} x+b_{i} \\
\left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, L
$$

extends to problems over second-order cone:

$$
\|A x+b\| \leq e^{T} x+d
$$

is equivalent to LMI

$$
\left[\begin{array}{cc}
\left(e^{T} x+d\right) I & A x+b \\
(A x+b)^{T} & e^{T} x+d
\end{array}\right] \succeq 0
$$

Simple nonlinear example

$$
\begin{aligned}
& \operatorname{minimize} \frac{\left(c^{T} x\right)^{2}}{d^{T} x} \\
& \text { subject to } A x \preceq b
\end{aligned}
$$

(assume $d^{T} x>0$ whenever $A x \preceq b$)

1. equivalent problem with linear objective:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A x \preceq b \\
& t-\frac{\left(c^{T} x\right)^{2}}{d^{T} x} \geq 0
\end{array}
$$

2. SDP (in x, t) using Schur complement: minimize t

Matrix norm minimization

$$
\operatorname{minimize}\|A(x)\|
$$

where

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}, \quad A_{i} \in \mathbf{R}^{p \times q}
$$

and $\|A\|=\left(\lambda_{\max }\left(A^{T} A\right)\right)^{1 / 2}$
can cast as SDP:

$$
\left.\begin{array}{l}
\operatorname{minimize} t \\
\text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \succeq 0
$$

Measurements with unknown sensor noise variance

Random vectors $y=x+v \in \mathbf{R}^{k}$

- x : random vector of interest, $\mathbf{E} x=\bar{x}, \mathbf{E}(x-\bar{x})(x-\bar{x})^{T}=\Sigma$
- v : measurement noise, independent of x,
$\mathbf{E} v=0, \mathbf{E} v v^{T}=F$, diagonal but otherwise unknown
- y : measured data, $\mathbf{E} y=\bar{x}$,

$$
\mathbf{E}(y-\bar{x})(y-\bar{x})^{T}=\hat{\Sigma}=\Sigma+F
$$

take many samples of $y \Rightarrow \bar{x}, \widehat{\Sigma}$ known
covariance Σ is unknown, but lies in (convex) set

$$
\mathbf{S}=\{\widehat{\Sigma}-D \mid D \succeq 0 \text { diagonal, } \widehat{\Sigma}-D \succeq 0\}
$$

can bound linear function of Σ by solving SDP over \mathbf{S}

Example. can bound variance of $c^{T} x$ by solving SDP:
$c^{T} \stackrel{\Sigma}{c} \geq \mathbf{E}\left(c^{T} x-c^{T} \bar{x}\right)^{2}$

$$
\geq \inf \left\{c^{T} \widehat{\Sigma} c-c^{T} D c \mid D \text { diag., } D \succeq 0, \widehat{\Sigma}-D \succeq 0\right\}
$$

Special case. 'educational testing problem' $(c=1)$

- x : 'ability' of a random student on k tests
- y : score of a random student on k tests
- v : testing error of k tests
- $1^{T} x$: total ability on tests
- $\mathbf{1}^{T} y$: total test score
- $\mathbf{1}^{T} \Sigma \mathbf{1}$: variance in total ability
- $1^{T} \delta 1$: variance in total score
- reliability of the test:

$$
\frac{\mathbf{1}^{T} \Sigma \mathbf{1}}{\mathbf{1}^{T} \Sigma \mathbf{1}}=1-\frac{\operatorname{Tr} F}{\mathbf{1}^{T} \Sigma \mathbf{1}}
$$

can bound reliability by solving SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr} D \\
\text { subject to } & D \text { diagonal, } D \succeq 0 \\
& \Sigma(D \succeq 0
\end{array}
$$

