Lecture 5

Linear and quadratic problems and Semidefinite programming (SDP)

- linear programming
- examples and applications
- linear fractional programming
- quadratic optimization problems
- (quadratically constrained) quadratic programming
- examples and applications
- Semidefinite programming
- applications

Linear programming (LP)

abstract form: minimize linear obj. over polyhedron \mathcal{P} :

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & x \in \mathcal{P} \end{array}$$

'standard' form

$$\begin{array}{ll} \text{minimize} & c^Tx\\ \text{subject to} & Fx=g\\ & x\succeq 0 \end{array}$$

(widely used in LP literature & software) variations, e.g.,

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \preceq b \\ & Fx = g \end{array}$$

Force/moment generation with thrusters

- ullet rigid body with center of mass at origin $p=0\in {f R}^2$
- ullet n forces with magnitude u_i , acting at $p_i=(p_{ix},p_{iy})$, in direction $heta_i$

resulting horizontal force: $F_x = \sum_{i=1}^n u_i \cos \theta_i$

resulting vertical force: $F_y = \sum_{i=1}^n u_i \sin \theta_i$

resulting torque: $T = \sum_{i=1}^{n} p_{iy} u_i \cos \theta_i - p_{ix} u_i \sin \theta_i$

force limits: $0 \le u_i \le 1$ (thrusters)

fuel usage: $u_1 + \cdots + u_n$

Problem: Find thruster forces u_i that yield given desired forces and torques and minimize fuel usage (if feasible)

can be expressed as LP:

minimize
$$\mathbf{1}^T u$$
 subject to $Fu = f^{\mathsf{des}}$ $0 \leq u_i \leq 1, \ i = 1, \dots, n$

where

$$F = \begin{bmatrix} \cos \theta_1 & \cdots & \cos \theta_n \\ \sin \theta_1 & \cdots & \sin \theta_n \\ p_{1y} \cos \theta_1 - p_{1x} \sin \theta_1 & \cdots & p_{ny} \cos \theta_n - p_{nx} \sin \theta_n \end{bmatrix}$$

$$f^{\mathsf{des}} = \begin{bmatrix} F_x^{\mathsf{des}} & F_y^{\mathsf{des}} & T^{\mathsf{des}} \end{bmatrix}^T$$

$$\mathbf{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$$

Converting LP to 'standard' form

ullet inequalities as equality constraints: write $a_i^Tx \leq b_i$ as

$$a_i^T x + s_i = b_i$$
$$s_i \ge 0$$

 s_i is called *slack variable* associated with $a_i^T x \leq b_i$

ullet unconstrained variables: write $x_i \in \mathbf{R}$ as

$$x_i = x_i^+ - x_i^-$$

 $x_i^+, x_i^- \ge 0$

Example. Thruster problem in 'standard' form

minimize
$$\begin{bmatrix} \mathbf{1}^T \ 0 \end{bmatrix} \begin{bmatrix} u \\ s \end{bmatrix}$$
 subject to $\begin{bmatrix} u \\ s \end{bmatrix} \succeq 0$ $\begin{bmatrix} F \ 0 \\ I \ I \end{bmatrix} \begin{bmatrix} u \\ s \end{bmatrix} = \begin{bmatrix} f^{\text{des}} \\ \mathbf{1} \end{bmatrix}$

Piecewise-linear minimization

minimize
$$\max_{i} (c_i^T x + d_i)$$
 subject to $Ax \leq b$

express as

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & c_i^T x + d_i \leq t \\ & Ax \preceq b \end{array}$$

an LP in variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$

ℓ_{∞} - and ℓ_1 -norm approximation

Constrained ℓ_{∞} - (Chebychev) approximation

minimize
$$||Ax - b||_{\infty}$$
 subject to $Fx \leq g$

write as

minimize
$$t$$
 subject to $Ax - b \leq t\mathbf{1}$
$$Ax - b \succeq -t\mathbf{1}$$

$$Fx \leq g$$

Constrained ℓ_1 -approximation

minimize
$$||Ax - b||_1$$
 subject to $Fx \leq g$

write as

minimize
$$\mathbf{1}^T y$$

subject to $Ax - b \leq y$
 $Ax - b \geq -y$
 $Fx \leq g$

Extensions of thruster problem

opposing thruster pairs

minimize
$$\sum\limits_{i}|u_{i}|$$
 subject to $Fu=f^{\mathsf{des}}$ $|u_{i}|\leq 1, \ i=1,\ldots,n$

can express as LP

• given f^{des} ,

minimize
$$||Fu - f^{\text{des}}||_{\infty}$$
 subject to $0 \le u_i \le 1, i = 1, \dots, n$

can express as LP

 \bullet given f^{des} ,

minimize
$$\#$$
 thrusters on subject to $Fu=f^{\mathrm{des}}$ $0 \leq u_i \leq 1, \ i=1,\ldots,n$

can not express as LP (# thrusters on is quasiconcave!)

Design centering

Find largest ball inside a polyhedron

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$

center is called Chebychev center

ball $\{x_c + u \mid ||u|| \le r\}$ lies in \mathcal{P} if and only if $\sup\{a_i^T x_c + a_i^T u \mid ||u|| \le r\} \le b_i, \ i = 1, \dots, m,$ i.e., $a_i^T x_c + r ||a_i|| \le b_i, \ i = 1, \dots, m$

Hence, finding Chebychev center is an LP:

maximize r subject to $a_i^T x_c + r ||a_i|| \leq b_i, \quad i = 1, \dots, m$

Linear fractional programming

$$\begin{array}{ll} \text{minimize} & \frac{c^Tx+d}{f^Tx+g} \\ \text{subject to} & Ax \preceq b \\ & f^Tx+g>0 \end{array}$$

- objective function is quasiconvex
- sublevel sets are polyhedra
- like LP, can be solved very efficiently

extension:

$$\begin{array}{ll} \text{minimize} & \max_{i=1,\dots,K} \frac{c_i^T x + d_i}{f_i^T x + g_i} \\ \text{subject to} & Ax \preceq b \\ & f_i^T x + g_i > 0, \ i = 1,\dots,K \end{array}$$

- objective function is quasiconvex
- sublevel sets are polyhedra

Nonconvex extensions of LP

Boolean LP or zero-one LP:

minimize
$$c^Tx$$

subject to $Ax \leq b$
 $Fx = g$
 $x_i \in \{0, 1\}$

integer LP:

minimize
$$c^T x$$

subject to $Ax \leq b$
 $Fx = g$
 $x_i \in \mathbf{Z}$

these are in general

- not convex problems
- extremely difficult to solve

Quadratic functions and forms

definitions:

• quadratic function

$$f(x) = x^{T} P x + 2q^{T} x + r$$
$$= \begin{bmatrix} x \\ 1 \end{bmatrix}^{T} \begin{bmatrix} P & q \\ q^{T} & r \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

convex if and only if $P \succeq 0$

• quadratic form $f(x) = x^T P x$ convex if and only if $P \succeq 0$

ullet Euclidean norm $f(x) = \|Ax + b\|$

Minimizing a quadratic function

minimize
$$f(x) = x^T P x + 2q^T x + r$$

nonconvex case $(P \not\succeq 0)$: unbounded below $(f^* = -\infty)$

Proof: take x=tv, $t\to\infty$, where $Pv=\lambda v$, $\lambda<0$

convex case $(P \succeq 0)$: x is optimal iff $\nabla f(x) = 2Px + 2q = 0$

two cases:

- $q \in \text{range}(P)$: $f^* > -\infty$
- $q \notin \text{range}(P)$: unbounded below $(f^* = -\infty)$

important special case, $P \succ 0$: unique optimal point $x_{\rm opt} = -P^{-1}q$; optimal value $f^\star = r - q^T P^{-1}q$

Least-squares problems

Minimize Euclidean norm

minimize
$$\|Ax-b\|$$
 $(A=[a_1\cdots a_n]$ full rank, skinny)

geometrically: project b on $\mathrm{span}(\{a_1,\ldots,a_n\})$

solution: $x_{ls} = (A^T A)^{-1} A^T b$

Minimum norm solution

$$\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$$

(A full rank, fat)

solution: $x_{mn} = A^T (AA^T)^{-1}b$

Minimizing a linear function with quadratic constraint

$$(A = A^T \succ 0)$$

$$x_{\text{opt}} = -A^{-1}c/\sqrt{c^T A^{-1}c}$$

Proof. Change of variables $y=A^{1/2}x$, $\tilde{c}=A^{-1/2}c$ minimize \tilde{c}^Ty subject to $y^Ty\leq 1$

Optimal solution: $y_{\text{opt}} = -\tilde{c}/\|\tilde{c}\|$.

Quadratic programming

quadratic objective, linear inequalities

convex optimization problem if $P \succeq 0$ very hard problem if $P \not\succeq 0$

QCQP and **SOCP**

quadratically constrained quadratic programming (QCQP):

minimize
$$x^T P_0 x + 2q_0^T x + r_0$$

subject to $x^T P_i x + 2q_i^T x + r_i \leq 0, \quad i = 1, \dots, L$

- \bullet convex if $P_i \succeq 0$, $i = 0, \ldots, L$
- nonconvex QCQP very difficult

second-order cone programming (SOCP):

minimize
$$c^Tx$$
 subject to $\|A_ix+b_i\|\leq e_i^Tx+d_i,\ i=1,\ldots,L$ includes QCQP (QP, LP)

Beamforming

- ullet omnidirectional antenna elements at positions $p_1,\ldots,p_n\in {f R}^2$
- plane wave incident from angle θ :

$$\exp j(k(\theta)^T p - \omega t), \quad k(\theta) = -[\cos \theta \sin \theta]^T$$

$$(j = \sqrt{-1})$$

- ullet output of element i: $y_i(heta) = \exp(jk(heta)^T p_i)$
- ullet output of array is weighted sum $y(heta) = \sum\limits_{i=1}^n w_i y_i(heta)$
- $G(\theta) \triangleq |y(\theta)|$ antenna gain pattern

design variables: $x = [\mathbf{Re} \ w^T \ \mathbf{Im} \ w^T]^T$ (antenna array weights or shading coefficients)

Sidelobe level minimization

make $G(\theta)$ small for $|\theta - \theta_{\rm tar}| > \alpha$

ullet θ_{tar} : target direction

• 2α : beamwidth

Via least-squares (discretize angles)

minimize
$$\sum\limits_i G(heta_i)^2$$
 subject to $y(heta_{\mathsf{tar}}) = 1$

(sum over angles outside beam)

least-squares problem with two linear equality constraints

Via QCQP

minimize
$$\max_i G(\theta_i)$$
 subject to $y(\theta_{\mathsf{tar}}) = 1$

(max over angles outside beam)

Quadratically constrained quadratic program

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & G(\theta_i) \leq t \\ & y(\theta_{\text{tar}}) = 1 \end{array}$$

Extensions

- $G(\theta_0) = 0$ (null in direction θ_0)
- \bullet w is real (amplitude only shading)
- $|w_i| \le 1$ (attenuation only shading)
- ullet minimize $\sigma^2\sum\limits_i|w_i|^2$ (thermal noise power in y)
- minimize beamwidth given a maximum sidelobe level
- maximize number of zero weights

Semidefinite programming (SDP)

minimize
$$c^T x$$
 subject to $F(x) \leq 0$

where

$$F(x) = F_0 + x_1 F_1 + \dots + x_n F_n, \quad F_i = F_i^T \in \mathbf{R}^{p \times p}$$

- SDP is cvx opt problem in generalized standard form $(\preceq is matrix inequality)$
- LMI $F(x) \leq 0$ is equivalent to a set of polynomial inequalities in x (nonnegative diagonal minors of -F)
- multiple LMIs can be combined into one (block diagonal) LMI

cf. LP, written as

minimize
$$c^T x$$
 subject to $G(x) \leq 0$

where

$$G(x) = g_0 + x_1 g_1 + \dots + x_n g_n$$

(and \leq is componentwise inequality)

LP as SDP

minimize
$$c^T x$$
 subject to $Ax \leq b$

can be expressed as SDP

minimize
$$c^T x$$

subject to $\mathbf{diag}(Ax - b) \preceq 0$

since
$$Ax - b \leq 0 \Leftrightarrow \mathbf{diag}(Ax - b) \leq 0$$
 (that's tricky notation!)

Maximum eigenvalue minimization

$$\mathsf{minimize}_x \ \lambda_{\mathsf{max}}(A(x))$$

$$A(x) = A_0 + x_1 A_1 + \dots + x_m A_m, A_i = A_i^T$$

SDP with variables $x \in \mathbf{R}^m$ and $t \in \mathbf{R}$:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & A(x) - tI \preceq 0 \\ \end{array}$$

Schur complements

$$X = X^T = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

 $S = C - B^T A^{-1} B$ is the *Schur complement* of A in X (provided $\det A \neq 0$)

- arises in many contexts
- useful to represent nonlinear convex constraints as LMIs

Facts: (homework)

- \bullet $X \succ 0$ if and only if $A \succ 0$ and $S \succ 0$
- \bullet if $A \succ 0$, then $X \succeq 0$ if and only if $S \succeq 0$

Example. (convex) quadratic inequality

$$(Ax+b)^T(Ax+b) - c^Tx - d \le 0$$

is equivalent to the LMI

$$\begin{bmatrix} I & Ax+b \\ (Ax+b)^T & c^Tx+d \end{bmatrix} \succeq 0$$

QCQP as **SDP**

The quadratically constrained quadratic program

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, i = 1, \dots, L$

where
$$f_i(x) \triangleq (A_i x + b)^T (A_i x + b) - c_i^T x - d_i$$

can be expressed as SDP (in x and t)

minimize t

subject to
$$\left[\begin{matrix} I & A_0x + b_0 \\ (A_0x + b_0)^T & c_0^Tx + d_0 + t \end{matrix} \right] \succeq 0,$$

$$\begin{bmatrix} I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, L$$

extends to problems over second-order cone:

$$||Ax + b|| \le e^T x + d$$

is equivalent to LMI

$$\begin{bmatrix} (e^T x + d)I & Ax + b \\ (Ax + b)^T & e^T x + d \end{bmatrix} \succeq 0$$

Simple nonlinear example

$$\begin{array}{c} \text{minimize} \quad \frac{(c^Tx)^2}{d^Tx} \\ \\ \text{subject to} \quad Ax \preceq b \\ \\ \text{(assume } d^Tx > 0 \text{ whenever } Ax \preceq b) \end{array}$$

1. equivalent problem with linear objective:

minimize
$$t$$
 subject to $Ax \preceq b$
$$t - \frac{(c^Tx)^2}{d^Tx} \geq 0$$

2. SDP (in x, t) using Schur complement:

Matrix norm minimization

minimize
$$||A(x)||$$

where

$$A(x)=A_0+x_1A_1+\cdots+x_nA_n,\quad A_i\in\mathbf{R}^{p\times q}$$
 and $\|A\|=\left(\lambda_{\max}(A^TA)\right)^{1/2}$

can cast as SDP:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \\ \end{array}$$

Measurements with unknown sensor noise variance

Random vectors $y = x + v \in \mathbf{R}^k$

- x: random vector of interest, $\mathbf{E} \, x = \bar{x}, \, \mathbf{E} (x - \bar{x}) (x - \bar{x})^T = \Sigma$
- v: measurement noise, independent of x, $\mathbf{E}\,v=0$, $\mathbf{E}\,vv^T=F$, diagonal but otherwise unknown
- y: measured data, $\mathbf{E} y = \bar{x}$, $\mathbf{E}(y \bar{x})(y \bar{x})^T = \widehat{\Sigma} = \Sigma + F$

take **many** samples of $y \Rightarrow \bar{x}$, $\hat{\Sigma}$ known

covariance Σ is unknown, but lies in (convex) set

$$\mathbf{S} = \{\widehat{\Sigma} - D \mid D \succeq 0 \text{ diagonal}, \widehat{\Sigma} - D \succeq 0\}$$

can bound linear function of Σ by solving SDP over ${\bf S}$

Example. can bound variance of c^Tx by solving SDP:

$$\begin{split} c^T \widehat{\Sigma} c \; &\geq \; \mathbf{E} (c^T x - c^T \bar{x})^2 \\ &\geq \; \inf \{ c^T \widehat{\Sigma} c - c^T D c \mid D \; \mathsf{diag.}, \; D \succeq 0, \; \widehat{\Sigma} - D \succeq 0 \} \end{split}$$

Special case. 'educational testing problem' (c = 1)

- ullet x: 'ability' of a random student on k tests
- ullet y: score of a random student on k tests
- v: testing error of k tests
- $\mathbf{1}^T x$: total ability on tests
- $\mathbf{1}^T y$: total test score
- $\mathbf{1}^T \Sigma \mathbf{1}$: variance in total ability
- $\mathbf{1}^T \widehat{\Sigma} \mathbf{1}$: variance in total score
- reliability of the test:

$$\frac{\mathbf{1}^T \Sigma \mathbf{1}}{\mathbf{1}^T \widehat{\Sigma} \mathbf{1}} = 1 - \frac{\mathbf{Tr} \, F}{\mathbf{1}^T \widehat{\Sigma} \mathbf{1}}$$

can bound reliability by solving SDP:

$$\begin{array}{ll} \text{maximize} & \mathbf{Tr}\,D \\ \text{subject to} & D \text{ diagonal}, \ D \succeq 0 \\ & \widehat{\Sigma} - D \succeq 0 \\ \end{array}$$