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Linear programming (LP)

abstract form: minimize linear obj. over polyhedron P :

minimize cTx
subject to x 2 P

P
xopt

�c

cTx constant

`standard' form

minimize cTx
subject to Fx = g

x � 0

(widely used in LP literature & software)

variations, e.g.,

maximize cTx
subject to Ax � b

Fx = g
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Force/moment generation with thrusters

� rigid body with center of mass at origin p = 0 2 R2

� n forces with magnitude ui, acting at pi = (pix; piy),
in direction �i

ui

(pix; piy)

�i

resulting horizontal force: Fx =
nX
i=1

ui cos �i

resulting vertical force: Fy =
nX
i=1

ui sin �i

resulting torque: T =
nX
i=1

piyui cos �i � pixui sin �i

force limits: 0 � ui � 1 (thrusters)
fuel usage: u1 + � � � + un

Problem: Find thruster forces ui that yield given desired
forces and torques and minimize fuel usage (if feasible)
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can be expressed as LP:

minimize 1
Tu

subject to Fu = fdes

0 � ui � 1; i = 1; : : : ; n

where

F =

2
6666664

cos �1 � � � cos �n
sin �1 � � � sin �n

p1y cos �1 � p1x sin �1 � � � pny cos �n � pnx sin �n

3
7777775

f des =
"
F des
x F des

y T des
#T

1 = [ 1 1 � � � 1 ]T
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Converting LP to `standard' form

� inequalities as equality constraints: write aTi x � bi as

aTi x + si = bi
si � 0

si is called slack variable associated with aTi x � bi

� unconstrained variables: write xi 2 R as

xi = x+i � x�i
x+i ; x

�
i � 0

Example. Thruster problem in `standard' form

minimize
�
1
T 0

� 2664 u
s

3
775

subject to

2
664 u
s

3
775 � 0

2
664 F 0
I I

3
775
2
664 u
s

3
775 =

2
664 f

des

1

3
775
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Piecewise-linear minimization

minimize max
i

(cTi x + di)

subject to Ax � b

x

cTi x+ di

maxi (c
T
i x+ di)

express as
minimize t
subject to cTi x + di � t

Ax � b

an LP in variables x 2 Rn, t 2 R
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`1- and `1-norm approximation

Constrained `1- (Chebychev) approximation

minimize kAx� bk1
subject to Fx � g

write as
minimize t
subject to Ax� b � t1

Ax� b � �t1
Fx � g

Constrained `1-approximation

minimize kAx� bk1
subject to Fx � g

write as
minimize 1

Ty
subject to Ax� b � y

Ax� b � �y
Fx � g
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Extensions of thruster problem

� opposing thruster pairs

minimize
X
i
juij

subject to Fu = fdes

juij � 1; i = 1; : : : ; n

can express as LP

� given fdes,

minimize kFu� fdesk1
subject to 0 � ui � 1; i = 1; : : : ; n

can express as LP

� given fdes,

minimize # thrusters on
subject to Fu = fdes

0 � ui � 1; i = 1; : : : ; n

can not express as LP
(# thrusters on is quasiconcave!)
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Design centering

Find largest ball inside a polyhedron

P = fx j aTi x � bi; i = 1; : : : ;mg
center is called Chebychev center

pxc

P

ball fxc + u j kuk � rg lies in P if and only if

supfaTi xc + aTi u j kuk � rg � bi; i = 1; : : : ;m;

i.e.,
aTi xc + rkaik � bi; i = 1; : : : ;m

Hence, �nding Chebychev center is an LP:

maximize r
subject to aTi xc + rkaik � bi; i = 1; : : : ;m
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Linear fractional programming

minimize
cTx + d

fTx + g

subject to Ax � b
fTx + g > 0

� objective function is quasiconvex

� sublevel sets are polyhedra

� like LP, can be solved very e�ciently

extension:

minimize max
i=1;:::;K

cTi x + di
fTi x + gi

subject to Ax � b
fTi x + gi > 0; i = 1; : : : ; K

� objective function is quasiconvex

� sublevel sets are polyhedra
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Nonconvex extensions of LP

Boolean LP or zero-one LP:

minimize cTx
subject to Ax � b

Fx = g
xi 2 f0; 1g

integer LP:
minimize cTx
subject to Ax � b

Fx = g
xi 2 Z

these are in general

� not convex problems

� extremely di�cult to solve
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Quadratic functions and forms

de�nitions:

� quadratic function

f(x) = xTPx + 2qTx + r

=

2
664 x
1

3
775
T 2

664 P q
qT r

3
775
2
664 x
1

3
775

convex if and only if P � 0

� quadratic form f(x) = xTPx
convex if and only if P � 0

� Euclidean norm f(x) = kAx + bk
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Minimizing a quadratic function

minimize f(x) = xTPx + 2qTx + r

nonconvex case (P 6� 0): unbounded below
(f ? = �1)

Proof: take x = tv, t!1, where Pv = �v, � < 0

convex case (P � 0):
x is optimal i� rf(x) = 2Px + 2q = 0

two cases:

� q 2 range(P ): f ? > �1
� q 62 range(P ): unbounded below (f ? = �1)

important special case, P � 0:
unique optimal point xopt = �P�1q;
optimal value f ? = r � qTP�1q
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Least-squares problems

Minimize Euclidean norm

minimize kAx� bk
(A = [a1 � � � an] full rank, skinny)

geometrically: project b on span(fa1; : : : ; ang)

span(fa1; : : : ; ang)

b

0 xls

solution: xls = (ATA)�1ATb

Minimum norm solution

minimize kxk
subject to Ax = b

(A full rank, fat)

fx j Ax = bg

0

xmn

solution: xmn = AT (AAT )�1b
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Minimizing a linear function with
quadratic constraint

minimize cTx
subject to xTAx � 1

(A = AT � 0) c

xopt

xopt = �A�1c=
p
cTA�1c

Proof. Change of variables y = A1=2x, ~c = A�1=2c

minimize ~cTy
subject to yTy � 1

Optimal solution: yopt = �~c=k~ck.
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Quadratic programming

quadratic objective, linear inequalities

minimize xTPx + 2qTx + r
subject to Ax � b

�

convex optimization problem if P � 0
very hard problem if P 6� 0
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QCQP and SOCP

quadratically constrained quadratic programming
(QCQP):

minimize xTP0x + 2qT0 x + r0

subject to xTPix + 2qTi x + ri � 0; i = 1; : : : ; L

� convex if Pi � 0, i = 0; : : : ; L

� nonconvex QCQP very di�cult

second-order cone programming (SOCP):

minimize cTx

subject to kAix + bik � eTi x + di; i = 1; : : : ; L

includes QCQP (QP, LP)
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Beamforming

� omnidirectional antenna elements at positions
p1; : : : ; pn 2 R2

� plane wave incident from angle �:

exp j(k(�)Tp� !t); k(�) = �[cos � sin �]T

(j =
p�1)

p1

�
k(�)

� output of element i: yi(�) = exp(jk(�)Tpi)

� output of array is weighted sum y(�) =
nX
i=1

wiyi(�)

� G(�) �= jy(�)j antenna gain pattern

design variables: x = [Re wT
Im wT ]T

(antenna array weights or shading coe�cients)
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Sidelobe level minimization

make G(�) small for j� � �tarj > �

� �tar: target direction
� 2�: beamwidth

Via least-squares (discretize angles)

minimize
X
i
G(�i)

2

subject to y(�tar) = 1

(sum over angles outside beam)

least-squares problem with two linear equality constraints

�tar = 30�

50�

10�

@R
G(�)

Rsidelobe level
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Via QCQP

minimize maxiG(�i)
subject to y(�tar) = 1

(max over angles outside beam)

Quadratically constrained quadratic program

minimize t
subject to G(�i) � t

y(�tar) = 1

�tar = 30�

50�

10�

@R
G(�)

Rsidelobe level
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Extensions

� G(�0) = 0 (null in direction �0)

� w is real (amplitude only shading)

� jwij � 1 (attenuation only shading)

� minimize �2
X
i
jwij2 (thermal noise power in y)

� minimize beamwidth given a maximum sidelobe level

� maximize number of zero weights
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Semide�nite programming (SDP)

minimize cTx

subject to F (x) � 0

where

F (x) = F0 + x1F1 + � � � + xnFn; Fi = F T
i 2 Rp�p

� SDP is cvx opt problem in generalized standard form
(� is matrix inequality)

� LMI F (x) � 0 is equivalent to a set of polynomial
inequalities in x (nonnegative diagonal minors of �F )

� multiple LMIs can be combined into one (block
diagonal) LMI

cf. LP, written as

minimize cTx

subject to G(x) � 0

where
G(x) = g0 + x1g1 + � � � + xngn

(and � is componentwise inequality)



Geometric and semide�nite programming 5 { 8

LP as SDP

minimize cTx

subject to Ax � b

can be expressed as SDP

minimize cTx

subject to diag(Ax� b) � 0

since Ax� b � 0 , diag(Ax� b) � 0
(that's tricky notation!)

Maximum eigenvalue minimization

minimizex �max(A(x))

A(x) = A0 + x1A1 + � � � + xmAm, Ai = AT
i

SDP with variables x 2 Rm and t 2 R:

minimize t

subject to A(x)� tI � 0
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Schur complements

X = XT =

2
664 A B

BT C

3
775

S = C �BTA�1B is the Schur complement of A in X
(provided detA 6= 0)

� arises in many contexts

� useful to represent nonlinear convex constraints as
LMIs

Facts: (homework)

� X � 0 if and only if A � 0 and S � 0

� if A � 0, then X � 0 if and only if S � 0

Example. (convex) quadratic inequality

(Ax + b)T (Ax + b)� cTx� d � 0

is equivalent to the LMI
2
664 I Ax + b

(Ax + b)T cTx + d

3
775 � 0
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QCQP as SDP

The quadratically constrained quadratic program

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ; L

where fi(x)
�= (Aix + b)T (Aix + b)� cTi x� di

can be expressed as SDP (in x and t)

minimize t

subject to

2
664 I A0x + b0
(A0x + b0)

T cT0 x + d0 + t

3
775 � 0;

2
664 I Aix + bi
(Aix + bi)

T cTi x + di

3
775 � 0; i = 1; : : : ; L

extends to problems over second-order cone:

kAx + bk � eTx + d

is equivalent to LMI
2
664 (e

Tx + d)I Ax + b

(Ax + b)T eTx + d

3
775 � 0
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Simple nonlinear example

minimize
(cTx)2

dTx

subject to Ax � b

(assume dTx > 0 whenever Ax � b)

1. equivalent problem with linear objective:

minimize t

subject to Ax � b

t�
(cTx)2

dTx
� 0

2. SDP (in x, t) using Schur complement:

minimize t

subject to

2
6666664
diag(b� Ax) 0 0

0 t cTx

0 cTx dTx

3
7777775 � 0
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Matrix norm minimization

minimize kA(x)k

where

A(x) = A0 + x1A1 + � � � + xnAn; Ai 2 Rp�q

and kAk =
�
�max(A

TA)
�1=2

can cast as SDP:

minimize t

subject to

2
664 tI A(x)
A(x)T tI

3
775 � 0
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Measurements with unknown sensor
noise variance

Random vectors y = x + v 2 Rk

� x: random vector of interest,
E x = �x, E(x� �x)(x� �x)T = �

� v: measurement noise, independent of x,
E v = 0, E vvT = F , diagonal but otherwise
unknown

� y: measured data, E y = �x,
E(y � �x)(y � �x)T = c� = � + F

take many samples of y ) �x, c� known

covariance � is unknown, but lies in (convex) set

S = fc��D j D � 0 diagonal; c��D � 0g

can bound linear function of � by solving SDP over S

Example. can bound variance of cTx by solving SDP:

cT
c�c � E(cTx� cT �x)2

� inffcT c�c� cTDc j D diag.; D � 0; c��D � 0g
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Special case. `educational testing problem' (c = 1)

� x: `ability' of a random student on k tests

� y: score of a random student on k tests

� v: testing error of k tests

� 1Tx: total ability on tests

� 1Ty: total test score

� 1T�1: variance in total ability

� 1T c�1: variance in total score

� reliability of the test:

1T�1

1T
c�1 = 1�

TrF

1T
c�1

can bound reliability by solving SDP:

maximize TrD

subject to D diagonal; D � 0c��D � 0
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