
CVX Tutorial , Lec. 6

Intorduction
CVX is a modeling system for disciplined convex
programming.

Disciplined convex programs, or DCPs, are convex
optimization problems that are described using a limited set
of construction rules, which enables them to be analyzed and
solved efficiently.

CVX is implemented in Matlab.

CVX is not meant to be a tool for checking if your problem
is convex. You need to know a bit about convex optimization
to effectively use CVX;

Introduction
If CVX accepts your problem, you can be sure it is convex.

CVX is not meant for very large problems, so if your
problem is very large (for example, a large image processing
problem), CVX is unlikely to work well (or at all). For such
problems you will likely need to directly call a solver

Disciplined convex programming
Disciplined convex programming is a methodology for
constructing convex optimization problems proposed by
Michael Grant, Stephen Boyd, and YinyuYe.

Disciplined convex programming imposes a set of
conventions or rules, which we call the DCP ruleset.
Problems which adhere to the ruleset can be rapidly and
automatically verified as convex and converted to solvable
form.

Problems that violate the ruleset are rejected, even when the
problem is convex.

A Quick start
Once you have installed CVX, you can start using it by
entering a CVX specification into a Matlab script or function,
or directly from the command prompt.
A specification can include any ordinary Matlab statements,
as well as special CVX-specific commands for declaring
primal and dual optimization variables and specifying
constraints and objective functions.
Within a CVX specification, optimization variables have no
numerical value; instead, they are special Matlab objects.
As Matlab reads a CVX specification, it builds an internal
representation of the optimization problem.

A Quick start
When Matlab reaches the CVX_end command, it completes
the conversion of the CVX specification to another form, and
calls the underlying core solver to solve it.
If the optimization is successful, the optimization variables
declared in the CVX specification are converted from objects
to ordinary Matlab numerical values that can be used in any
further Matlab calculations.
CVX also assigns a few other related Matlab variables. One,
for example, gives the status of the problem (i.e., whether an
optimal solution was found, or the problem was determined
to be infeasible or unbounded).

Example 1
Least-squares

CVX requires that all problem variables be declared before
they are used in an objective function or constraints.

Example 1
When Matlab reaches the CVX_end command, the least-
squares problem is solved, and the Matlab variable x is
overwritten with the solution of the least-squares problem.

In addition, four additional Matlab variables are created:

1. CVX_optval, contains the value of the objective function

2. CVX_status, which contains a string describing the status
of the calculation. In this case, CVX_status would contain
the string Solved.

3. CVX_slvtol: the tolerance level achieved by the solver.

4. CVX_slvitr: the number of iterations taken by the solver.

Example 1
All of these quantities, x, CVX_optval, and CVX_status, etc.
may now be freely used in other Matlab statements, just like
any other numeric or string values.

Example 2
Bound-constrained least-squares

The subject to statement does nothing—CVX provides this
statement simply to make specifications more readable. It is
entirely optional.

Constraints

Expressions using comparison operators (==, >=, etc.)
behave differently when they involve CVX optimization
variables than when they involve simple numeric values. For
example, because x is a declared variable, the expression
C*x==d above causes a constraint to be included in the
CVX specification, and returns no value at all.

Constraints
within a CVX specification, the statement norm(x,Inf)<=1 adds a
nonlinear constraint to the specification; outside of it, it returns a
1 or a 0 depending on the numeric value of x (specifically,
whether its `1-norm is less than or equal to, or more than, 1).
Because CVX is designed to support convex optimization, it must
be able to verify that problems are convex. To that end, CVX
adopts certain construction rules that govern how constraint and
objective expressions are constructed. For example, CVX requires
that the left- and right- hand sides of an equality constraint be
affine.
Inequality constraints of the form f(x) <= g(x) or g(x) >= f(x)
are accepted only if f can be verified as convex and g verified as
concave.

The Basics
CVX begin and CVX end

All CVX models must be preceded by the command
CVX_begin and terminated with the command CVX_end. All
variable declarations, objective functions, and constraints should
fall in between.
The CVX_begin command accepts several modifiers that you
may find useful. For instance, CVX_begin quiet prevents the
model from producing any screen output while it is being
solved.

The Basics
Data types for variables

All variables must be declared using the variable command
(or the variables command;) before they can be used in
constraints or an objective function.

Variables can be real or complex; and scalar, vector, matrix,
or n-dimensional arrays.

Matrices can have structure such as symmetry.

The Basics
The structure of a variable is given by supplying a list of
descriptive keywords after the name and size of the variable.

When multiple keywords are supplied, the resulting matrix
structure is determined by intersection; if the keywords
conflict, then an error will result.

The Basics
A variable statement can be used to declare only a single
variable, which can be a bit inconvenient if you have a lot of
variables to declare. For this reason, the variables statement is
provided which allows you to declare multiple variables; i.e.,

The one limitation of the variables command is that it cannot
declare complex or structured arrays (e.g., symmetric, etc.).
These must be declared one at a time, using the singular
variable command.

The Basics
Objective functions

Declaring an objective function requires the use of the
minimize or maximize function,as appropriate.

The objective function in a call to minimize must be convex;
the objective function in a call to maximize must be concave.
At most one objective function may be declared in a given
CVX specification, and the objective function must have a
scalar value.

The Basics
If no objective function is specified, the problem is
interpreted as a feasibility problem, which is the same as
performing a minimization with the objective function set to
zero. In this case, CVX_optval is either 0, if a feasible point is
found, or +Inf, if the constraints are not feasible.

The Basics
Constraints

The following constraint types are supported in CVX:

1. Equality == constraints, where both the left- and right-hand
sides are affine functions of the optimization variables.

2. Less-than <=, < inequality constraints, where the left-hand
expression is convex, and the right-hand expression is concave.

3. Greater-than >=, > constraints, where the left-hand expression
is concave, and the right-hand expression is convex.

In CVX, the strict inequalities < and > are accepted, but
interpreted as the associated nonstrict inequalities, <= and >=,
respectively

The Basics
These equality and inequality operators work for arrays. When
both sides of the constraint are arrays of the same size, the
constraint is imposed elementwise.

CVX also handles cases where one side is a scalar and the other is
an array. This is interpreted as a constraint for each element of the
array, with the (same) scalar appearing on the other side.

Note also the important distinction between =, which is an
assignment, and ==,which imposes an equality constraint.

Inequalities cannot be used if either side is complex.

The Basics
The base CVX function library includes a variety of convex,
concave, and affine functions which accept CVX variables or
expressions as arguments. Many are common Matlab
functions such as sum, trace, diag, sqrt, max, and min, re-
implemented as needed to support CVX; others are new
functions not found in Matlab.

DCP

The Basics
Sets
CVX supports the definition and use of convex sets. The base
library includes the cone of positive semidefinite n×n matrices,
the second-order or Lorentz cone, and various norm balls.
Matlab does not have a set membership operator, such as x in S. To
represent a set a function that returns an unnamed variable that is
required to be in the set is used.
Consider, for example the cone of symmetric positive semidefinite
n×n matrices. In CVX, we this is represented by the function
semidefinite(n), which returns an unnamed new variable, that is
constrained to be positive semidefinite. To require that the matrix
expression X be symmetric positive semidefinite, the syntax X
== semidefinite(n) is used.

The Basics
Example

Consider the second-order or Lorentz cone

The Basics
Dual variables

When a disciplined convex program is solved, the associated
dual problem is also solved.

The optimal dual variables, each of which is associated with a
constraint in the original problem, give valuable information
about the original problem.

To get access to the optimal dual variables in CVX, you
simply declare them, and associate them with the constraints.

The Basics
Example of LP

The Basics
No dimensions are given for y; they are automatically
determined from the constraint with which it is associated.

It is not necessary to place the dual variable on the left side of
the constraint; for example, the line above can also be
written in this way:

The Basics
Expression holders

Sometimes it is useful to store a CVX expression into a
Matlab variable for future use.

The construction z = 2 * x - y is not an equality constraint; it
is an assignment.

The Basics
The keywords expression and expressions have been provided
for declaring a single or multiple expression holders for
future assignment. Once an expression holder has been
declared, you may freely insert both numeric and CVX
expressions into it.

The Basics
The differences between a variable object and an expression
object are quite significant. A variable object holds an
optimization variable, and cannot be overwritten or assigned
in the CVX specification. An expression object, on the other
hand, is initialized to zero, and should be thought of as a
temporary place to store CVX expressions; it can be assigned
to, freely re-ssigned, and overwritten in a CVX specification.

DCP rule set
CVX enforces the conventions dictated by the disciplined
convex programming ruleset, or DCP ruleset for short. CVX
will issue an error message whenever it encounters a
violation of any of the rules, so it is important to understand
them before beginning to build models.

The DCP ruleset is a set of sufficient, but not necessary,
conditions for convexity. So it is possible to construct
expressions that violate the ruleset but are in fact convex.

DCP rule set
As an example consider the entropy If it is expressed as

CVX will reject it, because its concavity does not follow
from any of the composition rules.
Problems involving entropy, however, can be solved, by
explicitly using the entropy function, sum(entr(x)) which is
in the base CVX library, and thus recognized as concave by
CVX.

DCP rule set
If a convex (or concave) function is not recognized as convex
or concave by CVX, it can be added as a new atom.

As another example consider the function

which is convex. If it is written as

it will be recognized by CVX as a convex expression, and
therefore can be used in (appropriate) constraints and
objectives.

DCP rule set
But if it is written as

CVX will reject it, since convexity of this function does not
follow from the CVX ruleset.

DCP rule set
Curvature

In disciplined convex programming, a scalar expression is
classified by its curvature. There are four categories of
curvature: constant, affine, convex, and concave.

DCP rule set
Top-level rules

1. A minimization problem, consisting of a convex objective
function and zero or more constraints.

2. A maximization problem, consisting of a concave objective
function and zero or more constraints.

3. A feasibility problem, consisting of one or more constraints

DCP rule set
Constraints

1. An equality constraint, constructed using ==, where both
sides are affine.

2. A less-than inequality constraint, using either <= or <,
where the left side is convex and the right side is concave.

3. A greater-than inequality constraint, using either >= or >,
where the left side is concave and the right side is convex.

One or both sides of an equality constraint may be complex;
inequality constraints, on the other hand, must be real.

DCP rule set
Expression rules

What distinguishes disciplined convex programming from
more general convex programming are the rules governing
the construction of the expressions used in objective
functions and constraints. Disciplined convex programming
determines the curvature of scalar expressions by recursively
applying the following rules. While this list may seem long, it
is for the most part an enumeration of basic rules of convex
analysis for combining convex, concave, and affine forms:
sums, multiplication by scalars, and so forth.

DCP rule set

DCP rule set

DCP rule set

DCP rule set
If an expression cannot be categorized by this ruleset, it is
rejected by CVX.

For matrix and array expressions, these rules are applied on
an elementwise basis.

Of particular note is that these expression rules generally
forbid products between nonconstant expressions.

For example, the expression x*sqrt(x) happens to be a
convex function of x, but its convexity cannot be verified
using the CVX ruleset, and so is rejected.

DCP rule set
In CVX, functions are categorized in two attributes: curvature
(constant, affine, convex, or concave) and monotonicity
(nondecreasing, nonincreasing, or nonmonotonic). Curvature
determines the conditions under which they can appear in
expressions according to the expression rules. Monotonicity
determines how they can be used in function compositions, as we
shall see.
Following standard practice in convex analysis, convex functions
are interpreted as +inf when the argument is outside the domain
of the function, and concave functions are interpreted as inf
when the argument is outside its domain. In other words, convex
and concave functions in CVX are interpreted as their extended-
valued extensions.

DCP rule set
Monotonicity of a function is determined in the extended
sense, i.e., including the values of the argument outside its
domain. For example, sqrt(x) is determined to be
nondecreasing since its value is constant (inf) for negative
values of its argument; then jumps up to 0 for argument zero,
and increases for positive values of its argument.

DCP rule set
CVX does not consider a function to be convex or concave if
it is so only over a portion of its domain, even if the
argument is constrained to lie in one of these portions.

As an example, consider the function 1/x. This function is
convex for x > 0, and concave for x < 0. But you can never
write 1/x in CVX (unless x is constant), even if you have
imposed a constraint such as x>=1, which restricts x to lie
in the convex portion of function 1/x. You can use the CVX
function inv_pos(x), defined as 1/x for x > 0 and (inf)
therwise, for the convex portion of 1/x; CVX recognizes this
function as convex and nonincreasing.

DCP rule set
For functions with multiple arguments, curvature is always
considered jointly, but monotonicity can be considered on an
argument-by-argument basis.

is jointly convex in both arguments, but it is monotonic only
in its second argument.

DCP rule set
some functions are convex, concave, or affine only for a
subset of its arguments. For example, the function

is convex only in its first argument. Whenever this function is
used in a CVX specification, then, the remaining arguments
must be constant, or CVX will issue an error message.

DCP rule set
Compositions

1. A convex, concave, or affine function may accept an affine
expression (of compatible size) as an argument. The result is
convex, concave, or affine, respectively.

Example :Consider the function square(x), which is provided in
the CVX atom library. This function squares is argument; i.e., it
computes x.*x. (For array arguments, it squares each element
independently.) It is in the CVX atom library, and known to be
convex, provided its argument is real.

is accepted by CVX, which knows that it is convex.

DCP rule set
We consider a function, of known curvature and
monotonicity, that accepts multiple arguments. For convex
functions, the rules are:

1. If the function is nondecreasing in an argument, that
argument must be convex.

2. If the function is nonincreasing in an argument, that
argument must be concave.

3. If the function is neither nondecreasing or nonincreasing in
an argument, that argument must be affine.

If each argument of the function satisfies these rules, then the
expression is accepted by CVX, and is classified as convex

DCP rule set
We consider a function, of known curvature and
monotonicity, that accepts multiple arguments. For concave
functions, the rules are:

1. If the function is nondecreasing in an argument, that
argument must be concave

2. If the function is nonincreasing in an argument, that
argument must be convex.

3. If the function is neither nondecreasing or nonincreasing in
an argument, that argument must be affine.

the expression is accepted by CVX, and classified as concave.

DCP rule set
Suppose x is a vector variable, and A, b, and f are constants with
appropriate dimensions. CVX recognizes the expression

as concave. Consider the term sqrt(f’*x). CVX recognizes that
sqrt is concave and f’*x is affine, so it concludes that sqrt(f’*x) is
concave. Now consider the second term min(4,1.3-norm(A*x-
b)). CVX recognizes that min is concave and nondecreasing, so it
can accept concave arguments. CVX recognizes that 1.3-
norm(A*x-b) is concave, since it is the difference of a constant and
a convex function. So CVX concludes that the second term is also
concave.

Semidefinite programming
CVX provides a special SDP mode which allows this LMI
convention to be employed inside CVX models using
Matlab’s standard inequality operators >=, <=, etc.. In
order to use it, one must simply begin a model with the
statement CVX_begin sdp or CVX_begin SDP instead of
simply vx_begin. When SDP mode is engaged, CVX
interprets certain inequality constraints in a different
manner.

Semidefinite programming
1. Equality constraints are interpreted the same (i.e.,

elementwise).

2. Inequality constraints involving vectors and scalars are
interpreted the same; i.e., elementwise.

3. Inequality constraints involving non-square matrices are
disallowed; attemptingto use them causes an error. If you
wish to do true elementwise comparison of matrices X and
Y, use a vectorization operation.

Semidefinite programming
Inequality constraints involving real, square matrices are
interpreted as follows:

If either side is complex, then the inequalities are interpreted
as follows:

Semidefinite programming
There is one additional restriction: both X and Y must be the
same size, or one must be the scalar zero. For example, if X
and Y are matrices of size n.

Semidefinite programming
Note that LMI constraints enforce symmetry (real or
Hermitian, as appropriate) on their inputs. Unlike SDPSOL
[WB00], CVX does not extract the symmetric part for you:
you must take care to insure symmetry yourself. Since CVX
supports the declaration of symmetric matrices, this is
reasonably straightforward. If CVX cannot determine that an
LMI is symmetric, a warning will be issued.

A dual variable, if supplied, will be applied to the converted
equality constraint. It will be given a positive semidefinite
value if an optimal point is found.

Semidefinite programming

