Lecture 8:

Introduction to Sequential Unconstrained
Minimization for Constrained Optimization

brief history of SUMT & IP methods
logarithmic barrier function

central path

basic SUMT
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History of SUMT & IP methods

Interior point methods (very roughly)
e smooth ‘barrier’ function replaces constraints

e solve sequence of smooth unconstrained problems

Early methods (1950s-1960s)

e Frisch, SUMT (Fiacco & McCormick), Dikin,
method of centers (Huard & Lieu)

e convergence theory, but no worst-case complexity
theory

e (often) worked well in practice

o fell out of favor in 1970s

New methods (1984-)
e initiated by Karmarkar (for LP)
e polynomial worst-case complexity
e work well in practice

e extended to general case by Nesterov & Nemirovsky
1988
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Logarithmic barrier function

consider smooth, convex problem
(for now, without equality constraints):

minimize  fo(x)
subject to fi(z) <0, i=1,...,m

assume strict feasibility:

C=A{z] filx) <0, i=1,...,m} #0

we define logarithmic barrier ¢ as

~ 3 log(~fi(x)) ¢ € C

+00 otherwise

o) =

® ¢ is convex, smooth on ('

® » — 00 as x approaches boundary of C

argmin ¢ (if it exists) is called analytic center of
inequalities fi(z) < 0,..., fiu(z) <0
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Central path

for t > 0 define

z*(t) = argmin(t fo(x) + ¢(x))

(we assume minimizer exists and is unique)

o curve x*(t) for t > 0 called central path

e can compute z*(t) by solving smooth effectively
unconstrained minimization problem
(given a strictly feasible starting point)

e { gives relative weight of objective and barrier
e barrier ‘traps’ z*(t) in strictly feasible set

e intuition suggests x*(t) converges to optimal as
t — 00

x*(t) characterized by

 ola'(0) + £ 5 VA (0) =0
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Example: central path for LP

z € R* A e R ¢ points up

t=0
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Force field interpretation

imagine a particle in C', subject to forces

1th constraint generates force field

Fi(x) = V (—log(— fi(z))) 1

T —fi(z)

® ¢ is potential associated with constraint forces

e constraint forces push particle away from boundary of
feasible set

e constraint forces trap particle in C

superimpose objective force field

Fy(z) = =tV fo(x)

e pulls particle toward small f;

e { scales objective force

at x*(t), constraint forces exactly balance objective force

as t increases, particle is pulled towards optimal point,
trapped in C' by barrier potential
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Central points and duality

recall x* = x*(t) satisfies
1

tV fo(z™) + i‘; —f'(a:*)vfi(x*) = ()
rewrite as:
Vfo(él?*) + f:gl /\ZVfZ(ZE*) =0, A\ = —f%&?*)t > ()

so x* also minimizes L(xz,\) = fo(z) + .‘;njl A fi(x)

7.€., A\ is dual feasible and
f 2 g0 =inf (fole) + £ Ao
= Jol@") + A fil2”)

fo(z") —m/t

summary: a point on central path yields dual feasible
point and lower bound:

fo@™(t)) = f7 = folz™(t)) —m/t

(which proves z*(t) becomes optimal as t — )
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Central path and KKT conditions

KKT optimality conditions: x optimal <= d\ s.t.

filz) <0
A > 0
ANifilz) = 0

centrality conditions: x central <= dA, £t > 0 s.t.

filz) <0
A > 0
Vf0($)+§/\2sz($) =

Aifilz) = =1/t

o for ¢ large, x*(t) ‘almost’ satisfies KKT

e central path is continuous deformation of KKT
condition
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Unconstrained minimization method

given strictly feasible x, desired accuracy € > 0

l.t:=m/e
2. compute x*(t) starting from x
3. x = x*(t)

e computes e-suboptimal point on central path
(and certificate \)

e solves constrained problem by solving one (effectively)
unconstrained minimization (via Newton, BFGS, ...)

e works, but can be slow
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SUMT

(Sequential Unconstrained Minimization Technique)

given strictly feasible z, £ > 0, tolerance € > 0

repeat
1. compute z*(t) starting from x
2. x = x*(t)

3. it m/t < e, return(z)
4. increase ¢

e generates sequence of points on central path

e solves constrained problem via sequence of
unconstrained minimizations (often, Newton)

e simple updating rule for ¢: t7 = ut
(typical values 1 ~ 10 ~ 100)

steps 1-4 above called outer iteration
step 1 involves inner iterations (e.g., Newton steps)

tradeoff: small ;1 = few inner iters to compute z¥+1)
from z*), but more outer iters
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Example: LP

minimize ¢!z

subject to Az <b

A € R0 Newton with exact line search
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e width of ‘steps’ shows # Newton steps per outer
iteration

e height of ‘steps’ shows reduction in duality gap (1/u)

e problem solved (i.¢e., gap reduced by 10°) in few tens
of Newton iters

e gap decreases geometrically

e can see trade-off in choice of
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LP example continued ...

trade-off in choice of u: # Newton iters required to
reduce duality gap by 10°
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e SUMT works very well for wide range of u



