31C01100 Taloustieteen matemaattiset menetelmät - Mathematics for Economists
Aalto University - Fall 2021
Michele Crescenzi
TA: Hung Le

Problem Set 0
NOTE: This problem set is meant to help you review the material of Chapters $1-5$, you don't have to submit your answers

## Exercise 1

Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is discontinuous at $x=1$ and $x=0$ but continuous at every other point of its domain.

## Exercise 2

Calculate the first derivative of each of the following functions:

1. $f(x)=x^{a}$, with $a>0$;
2. $f(x)=e^{a x}$, with $a>0$;
3. $f(x)=(3 x+2)^{3}$;
4. $f(x)=\frac{3 x}{x^{2}+1}$;
5. $f(x)=4 e^{-3 x}$;
6. $f(x)=x \ln x$.

## Exercise 3

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x-x^{3}$. Find all the points at which the function attains:

1. a local maximum;
2. a local minimum;
3. a global maximum;
4. a global minimum.

## Exercise 4

Let $f: I \rightarrow \mathbb{R}$ be a function defined over an interval $I \subseteq \mathbb{R}$. We say that $f$ is convex if, for all $x, y \in I$, and all $a \in[0,1]$, we have

$$
f(a x+(1-a) y) \leq a f(x)+(1-a) f(y)
$$

Furthermore, we say that $f$ is concave if, for all $x, y \in I$, and all $a \in[0,1]$, we have

$$
f(a x+(1-a) y) \geq a f(x)+(1-a) f(y)
$$

For each of the following functions, determine whether it is convex or concave.

1. $f(x)=3 x^{2}$
2. $f(x)=e^{x}$
3. $f(x)=2+x$
4. $f(x)=-e^{x}$
5. $f(x)=\log x$
6. $f(x)=x^{3}-3 x$
