31C01100 Taloustieteen matemaattiset menetelmät - Mathematics for Economists

Aalto University – Fall 2021

Michele Crescenzi TA: Hung Le

Problem Set 0

NOTE: This problem set is meant to help you review the material of Chapters 1-5, you don't have to submit your answers

Exercise 1

Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is discontinuous at x = 1 and x = 0 but continuous at every other point of its domain.

Exercise 2

Calculate the first derivative of each of the following functions:

- 1. $f(x) = x^a$, with a > 0;
- 2. $f(x) = e^{ax}$, with a > 0;
- 3. $f(x) = (3x+2)^3$;
- 4. $f(x) = \frac{3x}{x^2+1}$;
- 5. $f(x) = 4e^{-3x}$;
- $6. \ f(x) = x \ln x.$

Exercise 3

Consider the function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x - x^3$. Find all the points at which the function attains:

- 1. a local maximum;
- 2. a local minimum;

- 3. a global maximum;
- 4. a global minimum.

Exercise 4

Let $f: I \to \mathbb{R}$ be a function defined over an interval $I \subseteq \mathbb{R}$. We say that f is **convex** if, for all $x, y \in I$, and all $a \in [0, 1]$, we have

$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y).$$

Furthermore, we say that f is **concave** if, for all $x, y \in I$, and all $a \in [0, 1]$, we have

$$f(ax + (1 - a)y) \ge af(x) + (1 - a)f(y).$$

For each of the following functions, determine whether it is convex or concave.

- 1. $f(x) = 3x^2$
- 2. $f(x) = e^x$
- 3. f(x) = 2 + x
- 4. $f(x) = -e^x$
- $5. \ f(x) = \log x$
- 6. $f(x) = x^3 3x$