ELEC-E4130

Lecture 2: mathematical review 2: Stokes and Divergence theorem

ELEC-E4130 / Taylor

Sept. 16, 2021

Other useful formulas

Cartesian coordinates

 $z = z$

 $z = z$

 $z = R \cos \theta$

 $\cos\theta$ $\bigwedge A_x$

 $-\sin\theta$
0

 $z = R \cos \theta$

 $d\ell = a_x dx + a_y dy + a_z dz$ $ds_r = d v dz$ $ds_v = dx dz$ $ds_z = dx dy$ $dv = dx dy dz$

Cylindrical coordinates

 $d\ell = a_r dr + a_b r d\phi + a_r dz$ $ds_r = r d\phi dz$ $ds_{\phi} = dr dz$ $ds_z = r dr d\phi$ $dv = r dr d\phi dz$

Spherical coordinates

 $d\ell = a_R dR + a_0 R d\theta + a_0 R \sin \theta d\phi$ $ds_R = R^2 \sin \theta d\theta d\phi$ $ds_{\theta} = R \sin \theta dR d\phi$ $ds_{\phi} = R dR d\theta$ $dv = R^2 \sin \theta \, dR \, d\theta \, d\phi$ Divergence theorem $\int_{V} \nabla \cdot \mathbf{A} dv = \oint_{V} \mathbf{A} \cdot d\mathbf{s}$ Stokes' theorem $\int_{\alpha} (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint_{\alpha} \mathbf{A} \cdot d\boldsymbol{\ell}$ **Constants** $c = 299\,792\,458\,\frac{\text{m}}{\text{s}}$ $\mu_0 = 4\pi \times 10^{-7} \frac{\text{Vs}}{\text{Am}} \approx 1.257 \times 10^{-6} \frac{\text{H}}{\text{m}}$ $\varepsilon_0 = \frac{1}{\mu_0 c^2} \approx 8.854 \times 10^{-12} \frac{\text{As}}{\text{Vm}}$ $\left(= \frac{\text{F}}{\text{m}} \right)$

 $e \approx 1.602 \times 10^{-19}$ C

ELEC-E4130 / Taylor Lecture 2

Coordinate transformations

Stokes theorem $A(x, y, z) \rightarrow vector field$

 \triangleright The total flux of the curl vector field through surface S is equal to the sum of dot products between the tangent vector field of contour C and a vector field A at the contour

ELEC-E4130 / Taylor *Lecture 2*

dS

 Z \triangle

Example problem

 $\mathbf{F} = xz\mathbf{a_x} + yz\mathbf{a_v} + xy\mathbf{a_z}$ $\int_{S} \nabla \times \mathbf{F} \cdot d\mathbf{s} = \oint_{C} \mathbf{F} \cdot d\mathbf{l}$ sphere $\rightarrow x^2 + y^2 + z^2 = 4$ cylinder \rightarrow x² + y² = 1

- Show that stokes theorem is valid for the contour and surface shown in the figure. \blacktriangleright
- The closed contour C is defined by the intersection of the sphere and cylinder \blacktriangleright
- The surface S is the part of the sphere that lies inside of the cylinder \blacktriangleright

Example problem: Solution 2/7

$$
\left| \int_{S} \nabla \times \mathbf{F} \cdot \mathbf{ds} \right|
$$

$$
\mathbf{A} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{F}_{\mathbf{x}} & \mathbf{F}_{\mathbf{y}} & \mathbf{F}_{\mathbf{z}} \end{vmatrix} = (\mathbf{x} - \mathbf{y})\mathbf{a}_{\mathbf{x}} + (\mathbf{x} - \mathbf{y})\mathbf{a}_{\mathbf{y}} + (\mathbf{0})\mathbf{a}_{\mathbf{z}} = \mathbf{A}_{\mathbf{x}}\mathbf{a}_{\mathbf{x}} + \mathbf{A}_{\mathbf{y}}\mathbf{a}_{\mathbf{y}} + \mathbf{A}_{\mathbf{z}}\mathbf{a}_{\mathbf{z}}
$$

$$
\mathbf{A} = A_{x} \mathbf{a}_{x} + A_{y} \mathbf{a}_{y} + A_{z} \mathbf{a}_{z}
$$

Convert to spherical coordinates and spherical base vectors

$$
A_R = \sin(\theta)\cos(\phi)A_x + \sin(\theta)\sin(\phi)A_y
$$

x = R \sin(\theta)\cos(\phi)
y = R \sin(\theta)\sin(\phi)

 $A_R = R[\sin(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)] \cdot [\sin(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)]$ $A_R = R[\sin^2(\theta)\cos^2(\phi) - \sin^2(\theta)\sin^2(\phi)]$

 $A = A_r a_r + \cdots$

Example problem: Solution 6/7

$$
\int_S \boldsymbol{\nabla} \times \mathbf{F} \cdot d\mathbf{s} = \int_S \ A_R ds_R
$$

$$
= \int_{S} R[\sin^{2}(\theta)\cos^{2}(\phi) - \sin^{2}(\theta)\sin^{2}(\phi)]R^{2}\sin(\theta)d\theta d\phi
$$

$$
= \int_{S} R^{3} \sin^{3}(\theta) [\cos^{2}(\phi) - \sin^{2}(\phi)] d\theta d\phi
$$

$$
= R^{3} \int_{0}^{\tan^{-1}(\frac{1}{\sqrt{3}})} \sin^{3}(\theta) d\theta \int_{0}^{2\pi} \cos^{2}(\phi) - \sin^{2}(\phi) d\phi
$$

$$
= R^{3} \int_{0}^{\tan^{-1}(\frac{1}{\sqrt{3}})} \sin^{3}(\theta) d\theta \left[\int_{0}^{2\pi} \cos^{2}(\phi) d\phi - \int_{0}^{2\pi} \sin^{2}(\phi) d\phi \right]
$$

$$
x^{2}+y^{2}+z^{2}=4
$$

 \mathbf{v}

 $x^2 + y^2 = 1$

In class exercise

 $\mathbf{F} = xza_x + yza_y + xya_z$

Let's solve the other side

In class exercise: Solution 1/2

 $F \cdot dl$

 ϕ

 $\mathbf{F} = xz\mathbf{a}_x + yz\mathbf{a}_y + xy\mathbf{a}_z$

Note that its only necessary to compute A_{Φ} since dl always points in the a_{ω} direction $dl \rightarrow r d\Phi a_{\phi}$

In class exercise: Solution 2/2

 $\mathbf{F} = \mathbf{x} \mathbf{z} \mathbf{a}_{\mathbf{x}} + \mathbf{y} \mathbf{z} \mathbf{a}_{\mathbf{y}} + \mathbf{x} \mathbf{y} \mathbf{a}_{\mathbf{z}}$

$$
A_{\phi} = -\sin(\phi)A_{x} + \cos(\phi)A_{y}
$$

\n
$$
A_{\phi} = -xz \sin(\phi) + yz \cos(\phi)
$$

\n
$$
x = r \cos(\phi)
$$

\n
$$
y = r \sin(\phi)
$$

 $A_{\varphi} = -r$ z cos(φ)sin(φ) + rz cos(φ)sin(φ ${\rm A}_\Phi=0$

 $F \cdot dI$

 \oint_C

Divergence theorem

 ${\bf A}({\rm x,y,z}) \rightarrow {\rm vector \ field} \qquad \qquad {\bf A} =$ $A_{x}a_{x} + A_{y}a_{y} + A_{z}a_{z}$ ${\bf \nabla} =$ д $\partial {\rm x}$ $a_x +$ д $\partial \mathrm{y}$ $a_y +$ д $\partial \mathrm{z}$ $\mathbf{a_{z}}$ z $\nabla \cdot \mathbf{A} =$ д $\partial {\rm x}$ A_{x} + д $\partial \mathrm{y}$ ${\rm A_y}$ + д z ${\rm A^{}_{z}}$

> $\int_{V} \mathbf{\nabla} \cdot \mathbf{A} \mathrm{d}v = \oint_{S} \mathbf{A} \cdot$) A · d**s**
s S is a closed surface that bounds V

- \blacktriangleright The volume integral of the divergence of A is equal to the flux of A through S where S bounds A
- \blacktriangleright The sum of infinitesimal outward flows across vector field A within volume V is equal to the total flux of A through S where S bounds A
- **Wikipedia:** *sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region*

Example problem

$$
\mathbf{F} = z\mathbf{a_x} + y\mathbf{a_y} + x\mathbf{a_z}
$$

$$
\int_{V} \mathbf{\nabla} \cdot \mathbf{F} dv = \oint_{S} \mathbf{F} \cdot d\mathbf{s}
$$

 \triangleright Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

unit sphere
$$
\rightarrow x^2 + y^2 + z^2 = 1
$$

Example problem: Solution 1/4

$$
\mathbf{F} = z\mathbf{a}_x + y\mathbf{a}_y + x\mathbf{a}_z
$$

 $\mathbf{F} \cdot d\mathbf{s}$ Φ

Find the flux of the vector field F over the unit sphere \blacktriangleright using both sides of the divergence theorem equality

unit sphere
$$
\rightarrow
$$
 x² + y² + z² = 1

Example problem: Solution 2/4

$$
\mathbf{F} = z\mathbf{a_x} + y\mathbf{a_y} + x\mathbf{a_z}
$$

- $\int_{V} \nabla \cdot \mathbf{F} dv = \oint_{S} \mathbf{F} \cdot d\mathbf{s}$ unit sphere $\rightarrow x^{2} + y^{2} + z^{2} =$) F·ds
s
- \triangleright Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

unit sphere $\rightarrow x^2 + y^2 + z^2 = 1$

$$
F_R = \sin(\theta)\cos(\phi)F_x + \sin(\theta)\sin(\phi)F_y + \cos(\theta)F_z
$$

x = R sin(\theta)cos(\phi)
y = R sin(\theta)sin(\phi)
z = R cos(\theta)

$$
F_R = \sin(\theta)\cos(\phi)z + \sin(\theta)\sin(\phi)y + \cos(\theta)x
$$

\n
$$
F_R = R \sin(\theta)\cos(\phi)\cos(\theta) + R \sin^2(\theta)\sin^2(\phi) + R \sin(\theta)\cos(\phi)\cos(\theta)
$$

\n
$$
F_R = 2R \sin(\theta)\cos(\phi)\cos(\theta) + R \sin^2(\theta)\sin^2(\phi)
$$

Example problem: Solution 3/4

$$
\oint_{S} \mathbf{F} \cdot d\mathbf{s} = \oint_{S} F_{R} R^{2} \sin(\theta) d\theta d\phi
$$
\n
$$
= \oint_{S} [2R \sin(\theta) \cos(\phi) \cos(\theta) + R \sin^{2}(\theta) \sin^{2}(\phi)]R^{2} \sin(\theta) d\theta d\phi
$$
\n
$$
= R^{3} \oint_{S} [2\sin^{2}(\theta) \cos(\theta) \cos(\phi) + \sin^{3}(\theta) \sin^{2}(\phi)]d\theta d\phi
$$
\n
$$
= R^{3} \left[2 \int_{0}^{\pi} \sin^{2}(\theta) \cos(\theta) d\theta \int_{0}^{2\pi} \cos(\phi) d\phi + \int_{0}^{\pi} \sin^{3}(\theta) d\theta \int_{0}^{2\pi} \sin^{2}(\phi) d\phi \right]
$$

Example problem: Solution 4/4

In class exercise:

$$
F = za_x + ya_y + xa_z
$$

 \triangleright Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

 $\nabla \cdot \mathbf{F} \, \mathrm{d}v$ unit sphere $\rightarrow x^2 + y^2 + z^2 = 1$

Let's solve the other side

In class exercise: Solution 1/1

$$
F = za_x + ya_y + xa_z
$$

$$
\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} A_x + \frac{\partial}{\partial y} A_y + \frac{\partial}{\partial z} A_z = \frac{\partial}{\partial x} (z) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (x) = 1
$$

$$
\int_{V} \mathbf{\nabla} \cdot \mathbf{F} dv = \iiint_{V} 1 R^{2} \sin(\theta) dR d\theta d\phi
$$

$$
= \int_{0}^{1} R^{2} dR \int_{0}^{\pi} \sin(\theta) d\theta \int_{0}^{2\pi} d\phi
$$

$$
= \left(\frac{1}{3}\right) (2)(2\pi) = \frac{4\pi}{3}
$$

Conclusions and Next Time

Summary

- \triangleright Your choice to parameterize the contour/surface or map the vector field to something that is "naturally aligned" with the contour/surface
	- \triangleright Many EM problems have some sort of cylindrical or radial symmetry giving rise to circular contours and spherical and cylindrical test surfaces. Its often not a bad idea to map the vector field to match
- \triangleright Stoke's and divergence theorems map between N dimensional and to an N-1 dimensional integrals.
	- \triangleright One side of each theorem is typically easier to evaluate than the other although this depends on the vector field and surface
- \triangleright Next week Dr. Wallen starts with Chapter 7
- \triangleright Have a good weekend!

