ELEC-E4130

Lecture 2: mathematical review 2: Stokes and Divergence theorem

Nabla operations

Cartesian coordinates (x, y, z)

$$
\begin{aligned}
& \nabla V=\mathrm{a}_{x} \frac{\partial V}{\partial x}+\mathrm{a}_{y} \frac{\partial V}{\partial y}+\mathrm{a}_{z} \frac{\partial V}{\partial z} \\
& \nabla \times \mathrm{A}=\left|\begin{array}{lll}
\mathrm{a}_{x} & \mathrm{a}_{y} & \mathrm{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& \nabla \cdot \mathrm{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& \nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
\end{aligned}
$$

Cylindrical coordinates (r, ϕ, z)

$$
\begin{aligned}
\nabla V & =\mathbf{a}_{r} \frac{\partial V}{\partial r}+\mathrm{a}_{\phi} \frac{1}{r} \frac{\partial V}{\partial \phi}+\mathrm{a}_{z} \frac{\partial V}{\partial z} \\
\nabla \times \mathbf{A} & =\frac{1}{r}\left|\begin{array}{ccc}
\mathrm{a}_{r} & \mathrm{a}_{\phi} r & \mathrm{a}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
A_{r} & r A_{\phi} & A_{z}
\end{array}\right| \\
\nabla \cdot \mathbf{A} & =\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} \\
\nabla^{2} V & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
\end{aligned}
$$

Spherical coordinates (R, θ, ϕ)

$$
\begin{aligned}
& \nabla V=\mathrm{a}_{R} \frac{\partial V}{\partial R}+\mathrm{a}_{\theta} \frac{1}{R} \frac{\partial V}{\partial \theta}+\mathrm{a}_{\phi} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\
& \nabla \times \mathrm{A}=\frac{1}{R^{2} \sin \theta}\left|\begin{array}{ccc}
\mathrm{a}_{R} & \mathrm{a}_{\theta} R & \mathrm{a}_{\phi} R \sin \theta \\
\frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{R} & R A_{\theta} & (R \sin \theta) A_{\phi}
\end{array}\right| \\
& \nabla \cdot \mathrm{A}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
& \nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

Coordinate transformations

Cartesian - Cylindrical

$$
\begin{aligned}
& x=r \cos \phi, \quad y=r \sin \phi, \quad z=z \\
& r=\sqrt{x^{2}+y^{2},} \quad \phi=\tan ^{-1} \frac{y}{x}, \quad z=z \\
& \left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right) \\
& \left(\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
\end{aligned}
$$

Cartesian - Spherical
$x=R \sin \theta \cos \phi, \quad y=R \sin \theta \sin \phi, \quad z=R \cos \theta$
$R=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}, \quad \phi=\tan ^{-1} \frac{y}{x}$

$$
\begin{aligned}
& \left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right)\left(\begin{array}{l}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right) \\
& \left(\begin{array}{c}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
\end{aligned}
$$

Cylindrical - Spherical

$$
\begin{array}{rll}
r=R \sin \theta, & \phi=\phi, & z=R \cos \theta \\
R=\sqrt{r^{2}+z^{2}}, & \theta=\tan ^{-1} \frac{r}{z}, & \phi=\phi \\
\left(\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right) & =\left(\begin{array}{ccc}
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\cos \theta & -\sin \theta & 0
\end{array}\right)\left(\begin{array}{l}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right) \\
\left(\begin{array}{l}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta & 0 & \cos \theta \\
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right)
\end{array}
$$

Other useful formulas

Cartesian coordinates

$$
\begin{aligned}
d \boldsymbol{\ell} & =\mathrm{a}_{x} d x+\mathrm{a}_{y} d y+\mathrm{a}_{z} d z \\
d s_{x} & =d y d z \\
d s_{y} & =d x d z \\
d s_{z} & =d x d y \\
d v & =d x d y d z
\end{aligned}
$$

Cylindrical coordinates

$$
\begin{aligned}
d \boldsymbol{\ell} & =\mathbf{a}_{r} d r+\mathbf{a}_{\phi} r d \phi+\mathrm{a}_{z} d z \\
d s_{r} & =r d \phi d z \\
d s_{\phi} & =d r d z \\
d s_{z} & =r d r d \phi \\
d v & =r d r d \phi d z
\end{aligned}
$$

Spherical coordinates

$$
d \boldsymbol{\ell}=\mathrm{a}_{R} d R+\mathrm{a}_{\theta} R d \theta+\mathrm{a}_{\phi} R \sin \theta d \phi
$$

$$
d s_{R}=R^{2} \sin \theta d \theta d \phi
$$

$$
d s_{\theta}=R \sin \theta d R d \phi
$$

$$
d s_{\phi}=R d R d \theta
$$

$$
d v=R^{2} \sin \theta d R d \theta d \phi
$$

Divergence theorem $\int_{V} \nabla \cdot \mathrm{~A} d v=\oint_{S} \mathrm{~A} \cdot d \mathrm{~s}$
Stokes' theorem $\int_{S}(\nabla \times \mathbf{A}) \cdot d \mathbf{s}=\oint_{C} \mathbf{A} \cdot d \boldsymbol{\ell}$
Constants

$$
c=299792458 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}} \approx 1.257 \times 10^{-6} \frac{\mathrm{H}}{\mathrm{~m}}
$$

$$
\varepsilon_{0}=\frac{1}{\mu_{0} c^{2}} \approx 8.854 \times 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \quad\left(=\frac{\mathrm{F}}{\mathrm{~m}}\right)
$$

$$
e \approx 1.602 \times 10^{-19} \mathrm{C}
$$

Stokes Theorem

Stokes theorem

A $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow$ vector field $\boldsymbol{\nabla}=\frac{\partial}{\partial \mathrm{x}} \mathbf{a}_{\mathbf{x}}+\frac{\partial}{\partial \mathrm{y}} \mathbf{a}_{\mathbf{y}}+\frac{\partial}{\partial \mathrm{z}} \mathbf{a}_{\mathbf{z}}$

$$
\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathbf{a}_{\mathbf{x}}+\mathrm{A}_{\mathrm{y}} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}}
$$

$$
\boldsymbol{\nabla} \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{~A}_{\mathrm{x}} & \mathrm{~A}_{\mathrm{y}} & \mathrm{~A}_{\mathrm{z}}
\end{array}\right|
$$

$$
\int_{S} \boldsymbol{\nabla} \times \mathbf{A} \cdot \mathbf{d} \mathbf{s}=\oint_{C} \mathbf{A} \cdot \mathbf{d} \mathbf{l} \quad \mathrm{C} \text { is a closed contour that bounds } \mathrm{S}
$$

$>$ The total flux of the curl vector field through surface S is equal to the sum of dot products between the tangent vector field of contour C and a vector field A at the contour

Example problem

$$
\begin{aligned}
& \mathbf{F}=\mathrm{xza}_{\mathrm{x}}+\mathrm{yza}_{\mathbf{y}}+\mathrm{xya}_{\mathbf{z}} \\
& \int_{\mathrm{S}} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d s}=\oint_{\mathrm{C}} \mathbf{F} \cdot \mathbf{d l} \\
& \text { sphere } \rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=4 \\
& \text { cylinder } \rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1
\end{aligned}
$$

$>$ Show that stokes theorem is valid for the contour and surface shown in the figure.
> The closed contour C is defined by the intersection of the sphere and cylinder
$>$ The surface S is the part of the sphere that lies inside of the cylinder

Example problem: Solution 1/7

$\mathbf{F}=x z \mathbf{a}_{\mathrm{x}}+\mathrm{yza} \mathbf{a}_{\mathbf{y}}+\mathrm{xy} \mathbf{a}_{\mathrm{z}}$

Vector \mathbf{F} field is in cartesian coordinates

Surface S is easily described in spherical coordinates

Contour C is easily described in cylindrical coordinates

Example problem: Solution 2/7

$$
\begin{gathered}
\mathbf{F}=\mathrm{xza}_{\mathbf{x}}+\mathrm{yza}_{\mathbf{y}}+\mathrm{xya}_{\mathbf{z}} \\
\int_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d s}
\end{gathered}
$$

$\mathbf{A}=\boldsymbol{\nabla} \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} & \mathbf{a}_{\mathbf{x}} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{F}_{\mathrm{x}} & \mathrm{F}_{\mathrm{y}} & \mathrm{F}_{\mathrm{z}}\end{array}\right|=(\mathrm{x}-\mathrm{y}) \mathbf{a}_{\mathrm{x}}+(\mathrm{x}-\mathrm{y}) \mathbf{a}_{\mathbf{y}}+(0) \mathbf{a}_{\mathrm{z}}=\mathrm{A}_{\mathrm{x}} \mathbf{a}_{\mathbf{x}}+\mathrm{A}_{\mathrm{y}} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}}$
$\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathbf{a}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}}$ \square Convert to spherical coordinates and spherical base vectors

Example problem: Solution 3/7

$$
\mathbf{F}=x z \mathbf{a}_{\mathbf{x}}+y z \mathbf{a}_{\mathbf{y}}+x y \mathbf{a}_{\mathbf{z}}
$$

$$
\int_{S} \nabla \times F \cdot \mathbf{d s}
$$

$$
\mathbf{A}=(\mathrm{x}-\mathrm{y}) \mathbf{a}_{\mathrm{x}}+(\mathrm{x}-\mathrm{y}) \mathbf{a}_{\mathbf{y}}+(0) \mathbf{a}_{\mathrm{z}}=\mathrm{A}_{\mathrm{x}} \mathbf{a}_{\mathbf{x}}+\mathrm{A}_{\mathrm{y}} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}}
$$

Cartesian - Spherical

$x=R \sin \theta \cos \phi, \quad y=R \sin \theta \sin \phi, \quad z=R \cos \theta$
$R=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}, \quad \phi=\tan ^{-1} \frac{y}{x}$

$$
\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right)\left(\begin{array}{l}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)
$$

Note that its only necessary to compute A_{R} since ds always points in the a_{R} direction ds $\rightarrow \mathrm{ds}_{\mathrm{R}} \mathrm{a}_{\mathrm{R}}$

$$
\left(\begin{array}{c}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
\hline \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right)\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
$$

Example problem: Solution 4/7

$$
\begin{aligned}
& \mathbf{F}=x z \mathbf{a}_{x}+y z \mathbf{a}_{y}+x y \mathbf{a}_{z} \quad \int_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d s} \\
& \mathbf{A}=(x-y) \mathbf{a}_{x}+(x-y) \mathbf{a}_{y}+(0) \mathbf{a}_{z}=A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{\mathbf{z}}
\end{aligned}
$$

$$
\begin{aligned}
A_{R} & =\sin (\theta) \cos (\phi) A_{x}+\sin (\theta) \sin (\phi) A_{y} \\
x & =R \sin (\theta) \cos (\phi) \\
y & =R \sin (\theta) \sin (\phi)
\end{aligned}
$$

$$
A_{R}=R[\sin (\theta) \cos (\phi)+\sin (\theta) \sin (\phi)] \cdot[\sin (\theta) \cos (\phi)-\sin (\theta) \sin (\phi)]
$$

$$
A_{R}=R\left[\sin ^{2}(\theta) \cos ^{2}(\phi)-\sin ^{2}(\theta) \sin ^{2}(\phi)\right]
$$

```
A = A Ararr +\cdots
```


Example problem: Solution 5/7

$$
\int_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d s}=\int_{\mathrm{S}} \mathrm{~A}_{\mathrm{R}} \mathrm{ds}_{\mathrm{R}}
$$

$$
=\int_{\mathrm{S}} R\left[\sin ^{2}(\theta) \cos ^{2}(\phi)-\sin ^{2}(\theta) \sin ^{2}(\phi)\right] R^{2} \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi
$$

$$
\begin{aligned}
& \text { sphere } \rightarrow x^{2}+y^{2}+z^{2}=4 \\
& \text { cylinder } \rightarrow x^{2}+y^{2}=1 \\
& x^{2}+y^{2}+z^{2}-4=x^{2}+y^{2}-1 \\
& z^{2}=3 \rightarrow z=\sqrt{3} \\
& \qquad \begin{array}{l}
\theta \in\left[0, \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right]
\end{array}
\end{aligned}
$$

Example problem: Solution 6/7

$$
\begin{aligned}
& \int_{\mathrm{S}} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d} \boldsymbol{s}=\int_{\mathrm{S}} \mathrm{~A}_{\mathrm{R}} \mathrm{ds} \mathrm{R}_{\mathrm{R}} \\
& =\int_{\mathrm{S}} R\left[\sin ^{2}(\theta) \cos ^{2}(\phi)-\sin ^{2}(\theta) \sin ^{2}(\phi)\right] R^{2} \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi \\
& =\int_{\mathrm{S}} R^{3} \sin ^{3}(\theta)\left[\cos ^{2}(\phi)-\sin ^{2}(\phi)\right] \mathrm{d} \theta \mathrm{~d} \phi \\
& =R^{3} \int_{\mathbf{0}}^{\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)} \sin ^{3}(\theta) \mathrm{d} \theta \int_{\mathbf{0}}^{2 \pi} \cos ^{2}(\phi)-\sin ^{2}(\phi) \mathrm{d} \phi \\
& =R^{3} \int_{\mathbf{0}}^{\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)} \sin ^{3}(\theta) \mathrm{d} \theta\left[\int_{\mathbf{0}}^{2 \pi} \cos ^{2}(\phi) \mathrm{d} \phi-\int_{\mathbf{0}}^{2 \pi} \sin ^{2}(\phi) \mathrm{d} \phi\right]
\end{aligned}
$$

Example problem: Solution 7/7

$$
\int_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathbf{d s}=\int_{S} A_{R} \mathrm{ds}_{\mathrm{R}}
$$

$$
=R^{3} \int_{0}^{\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)} \sin ^{3}(\theta) \mathrm{d} \theta\left[\int_{0}^{2 \pi} \cos ^{2}(\phi) \mathrm{d} \phi-\int_{0}^{2 \pi} \sin ^{2}(\phi) \mathrm{d} \phi\right]
$$

$$
=\mathrm{R}^{3} \int_{0}^{\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)} \sin ^{3}(\theta) \mathrm{d} \theta \underbrace{\left[\left.\left(\frac{1}{2} \phi+\frac{1}{2} \sin (2 \phi)\right)\right|_{0} ^{2 \pi}-\left.\left(\frac{1}{2} \phi-\frac{1}{2} \sin (2 \phi)\right)\right|_{0} ^{2 \pi}\right]}_{0}
$$

$$
\int_{S} \nabla \times \mathbf{F} \cdot \mathbf{d s}=0
$$

In class exercise

$$
\begin{aligned}
& \mathbf{F}=\mathrm{xza}_{\mathbf{x}}+\mathrm{yza}_{\mathbf{y}}+\mathrm{xya}_{\mathbf{z}} \\
& \oint_{\mathrm{C}} \mathbf{F} \cdot \mathbf{d} \mathbf{l}
\end{aligned}
$$

Let's solve the other side

In class exercise: Solution 1/2

$$
\mathbf{F}=x z \mathbf{a}_{\mathbf{x}}+y z \mathbf{a}_{\mathbf{y}}+x y \mathbf{a}_{\mathbf{z}}
$$

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d l}
$$

Formula Sheet

$$
\begin{aligned}
& x=r \cos \phi, \quad y=r \sin \phi, \quad z=z \\
& r=\sqrt{x^{2}+y^{2},} \quad \phi=\tan ^{-1} \frac{y}{x}, \\
& \left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right) \\
& \left(\begin{array}{l}
A_{r} \\
\hline A_{\phi} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
\hline-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\phi \in[0,2 \pi] \\
@ \\
\mathrm{z}=\sqrt{3} \\
r=1
\end{gathered}
$$

Note that its only necessary to compute A_{Φ} since dl always points in the a_{Φ} direction $\mathbf{d l} \rightarrow \mathrm{rd} \mathrm{a}_{\Phi}$

In class exercise: Solution 2/2

$$
\mathbf{F}=x z \mathbf{a}_{\mathbf{x}}+\mathrm{yz} \mathrm{\mathbf{a}}_{\mathbf{y}}+\mathrm{xya}_{\mathbf{z}} \quad \oint_{\mathrm{C}} \mathbf{F} \cdot \mathbf{d l}
$$

$$
\begin{gathered}
A_{\phi}=-\sin (\phi) A_{x}+\cos (\phi) A_{y} \\
A_{\phi}=-x z \sin (\phi)+y z \cos (\phi) \\
x=r \cos (\phi) \\
y=r \sin (\phi)
\end{gathered}
$$

$$
A_{\phi}=-r z \cos (\phi) \sin (\phi)+r z \cos (\phi) \sin (\phi)
$$

$$
\mathrm{A}_{\phi}=0
$$

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d l}=\mathbf{0}
$$

Divergence Theorem

Divergence theorem

A $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow$ vector field $\boldsymbol{\nabla}=\frac{\partial}{\partial \mathrm{x}} \mathbf{a}_{\mathbf{x}}+\frac{\partial}{\partial \mathrm{y}} \mathbf{a}_{\mathbf{y}}+\frac{\partial}{\partial \mathrm{z}} \mathbf{a}_{\mathbf{z}}$
$\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathbf{a}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}}$
$\boldsymbol{\nabla} \cdot \mathbf{A}=\frac{\partial}{\partial \mathrm{x}} \mathrm{A}_{\mathrm{x}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{A}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \mathrm{A}_{\mathrm{z}}$

$$
\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A d v}=\oint_{\mathrm{S}} \mathbf{A} \cdot \mathrm{~d} \mathbf{s} \quad \mathrm{~S} \text { is a closed surface that bounds } \mathrm{V}
$$

> The volume integral of the divergence of A is equal to the flux of A through S where S bounds A
$>$ The sum of infinitesimal outward flows across vector field A within volume V is equal to the total flux of A through S where S bounds A
> Wikipedia: sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region

Example problem

$$
\begin{aligned}
& \mathbf{F}=\mathrm{z} \mathbf{a}_{\mathbf{x}}+\mathrm{y} \mathbf{a}_{\mathbf{y}}+\mathrm{x} \mathbf{a}_{\mathbf{z}} \\
& \int_{\mathrm{V}} \boldsymbol{\nabla} \cdot \mathbf{F} \mathrm{~d} v=\oint_{\mathrm{S}} \mathbf{F} \cdot \mathrm{~d} \mathbf{s}
\end{aligned}
$$

> Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

$$
\text { unit sphere } \rightarrow x^{2}+y^{2}+z^{2}=1
$$

Example problem: Solution 1/4

$$
\mathbf{F}=\mathrm{z} \mathbf{a}_{\mathrm{x}}+\mathrm{y} \mathbf{a}_{\mathbf{y}}+\mathrm{x} \mathbf{a}_{\mathbf{z}}
$$

> Find the flux of the vector field F over the unit sphere

$$
\oint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s}
$$ using both sides of the divergence theorem equality

$$
\text { unit sphere } \rightarrow x^{2}+y^{2}+z^{2}=1
$$

Cartesian - Spherical

$$
\begin{array}{lll}
x=R \sin \theta \cos \phi, & y=R \sin \theta \sin \phi, & z=R \cos \theta \\
R=\sqrt{x^{2}+y^{2}+z^{2}}, & \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}, & \phi=\tan ^{-1} \frac{y}{x}
\end{array} \quad\left[\begin{array}{l}
\mathbf{F}=\mathrm{A}_{\mathbf{x}} \mathbf{a}_{\mathbf{x}}+\mathrm{A}_{y} \mathbf{a}_{\mathbf{y}}+\mathrm{A}_{\mathrm{z}} \mathbf{a}_{\mathbf{z}} \\
\mathbf{F}=\mathrm{A}_{\mathrm{r}} \mathbf{a}_{\mathbf{r}}+\mathrm{A}_{\theta} \mathbf{a}_{\theta}+\mathrm{A}_{\phi} \mathbf{a}_{\boldsymbol{\phi}}
\end{array}\right.
$$

$$
\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right)\left(\begin{array}{l}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)
$$

$$
\left(\begin{array}{c}
A_{R} \\
A_{\theta} \\
A_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right)\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
$$

Note that its only necessary to compute A_{R} since ds always points in the a_{R} direction ds $\rightarrow \mathrm{ds}_{\mathrm{R}} \mathrm{a}_{\mathrm{R}}$

Example problem: Solution 2/4

$$
\begin{aligned}
& \mathbf{F}=\mathrm{za} \mathbf{a}_{\mathbf{x}}+\mathrm{y} \mathbf{a}_{\mathbf{y}}+\mathrm{x} \mathbf{a}_{\mathbf{z}} \\
& \int_{V} \boldsymbol{\nabla} \cdot \mathbf{F} d v=\oint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s}
\end{aligned}
$$

> Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

$$
\text { unit sphere } \rightarrow x^{2}+y^{2}+z^{2}=1
$$

```
\(\mathrm{F}_{\mathrm{R}}=\sin (\theta) \cos (\phi) \mathrm{F}_{\mathrm{x}}+\sin (\theta) \sin (\phi) \mathrm{F}_{\mathrm{y}}+\cos (\theta) \mathrm{F}_{\mathrm{z}}\)
    \(x=R \sin (\theta) \cos (\phi)\)
    \(y=R \sin (\theta) \sin (\phi)\)
    \(\mathrm{z}=\mathrm{R} \cos (\theta)\)
\(F_{R}=\sin (\theta) \cos (\phi) z+\sin (\theta) \sin (\phi) y+\cos (\theta) x\)
\(F_{R}=R \sin (\theta) \cos (\phi) \cos (\theta)+R \sin ^{2}(\theta) \sin ^{2}(\phi)+R \sin (\theta) \cos (\phi) \cos (\theta)\)
\(F_{R}=2 R \sin (\theta) \cos (\phi) \cos (\theta)+R \sin ^{2}(\theta) \sin ^{2}(\phi)\)
```


Example problem: Solution 3/4

$$
\begin{aligned}
& \oint_{S} \mathbf{F} \cdot \mathrm{~d} \boldsymbol{s}=\oint_{\mathrm{S}} \mathrm{~F}_{\mathrm{R}} R^{2} \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi \\
& =\oint_{S}\left[2 R \sin (\theta) \cos (\phi) \cos (\theta)+R \sin ^{2}(\theta) \sin ^{2}(\phi)\right] R^{2} \sin (\theta) d \theta d \phi \\
& =R^{3} \oint_{S}\left[2 \sin ^{2}(\theta) \cos (\theta) \cos (\phi)+\sin ^{3}(\theta) \sin ^{2}(\phi)\right] d \theta d \phi \\
& =\mathrm{R}^{3}[\underbrace{2 \int_{0}^{\pi} \sin ^{2}(\theta) \cos (\theta) \mathrm{d} \theta}_{\mathrm{I}_{1}} \underbrace{\int_{0}^{2 \pi} \cos (\phi) \mathrm{d} \phi}_{\mathrm{I}_{2}}+\underbrace{\int_{0}^{\pi} \sin ^{3}(\theta) \mathrm{d} \theta}_{\mathrm{I}_{3}} \underbrace{\int_{0}^{2 \pi} \sin ^{2}(\phi) \mathrm{d} \phi}_{\mathrm{I}_{4}}]
\end{aligned}
$$

Example problem: Solution 4/4

$I_{3} \int_{\mathbf{0}}^{\pi} \sin ^{3}(\theta) \mathrm{d} \theta=\left.\left(-\frac{1}{3}\left(2+\sin ^{2}(\theta)\right) \cos (\theta)\right)\right|_{0} ^{\pi}=\frac{4}{3} \longrightarrow \quad$ Trigonometric identity
$\int_{4} \quad \int_{0}^{2 \pi} \sin ^{2}(\phi) \mathrm{d} \phi=\left.\left(\frac{1}{2} \phi-\frac{1}{4} \sin (2 \phi)\right)\right|_{0} ^{2 \pi}=\pi \longrightarrow$ Trigonometric identity

$$
\oint_{S} \mathbf{F} \cdot \mathrm{~d} \boldsymbol{s}=I_{1} I_{2}+I_{3} I_{4}=\frac{4 \pi}{3}
$$

In class exercise:

$$
\begin{aligned}
& \mathbf{F}=\mathrm{z} \mathbf{a}_{\mathrm{x}}+\mathrm{y} \mathbf{a}_{\mathbf{y}}+\mathrm{x} \mathbf{a}_{\mathbf{z}} \\
& \int_{\mathrm{V}} \boldsymbol{\nabla} \cdot \mathbf{F d v}
\end{aligned}
$$

> Find the flux of the vector field F over the unit sphere using both sides of the divergence theorem equality

$$
\text { unit sphere } \rightarrow x^{2}+y^{2}+z^{2}=1
$$

Let's solve the other side

In class exercise: Solution 1/1

$$
\begin{aligned}
& \mathbf{F}=\mathrm{za} \mathbf{a}_{\mathrm{x}}+\mathrm{y} \mathbf{a}_{\mathbf{y}}+\mathrm{x} \mathbf{a}_{\mathbf{z}} \\
& \boldsymbol{\nabla} \cdot \mathbf{F}=\frac{\partial}{\partial \mathrm{x}} \mathrm{~A}_{\mathrm{x}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{~A}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \mathrm{~A}_{\mathrm{z}}=\frac{\partial}{\partial \mathrm{x}}(\mathrm{z})+\frac{\partial}{\partial \mathrm{y}}(\mathrm{y})+\frac{\partial}{\partial \mathrm{z}}(\mathrm{x})=1
\end{aligned}
$$

	Spherical coordinates
	$d \boldsymbol{\ell}=\mathbf{a}_{R} d R+\mathbf{a}_{\theta} R d \theta+\mathbf{a}_{\phi} R \sin \theta d \phi$
	$d s_{R}=R^{2} \sin \theta d \theta d \phi$
	$d s_{\theta}=R \sin \theta d R d \phi$
	$d s_{\phi}=R d R d \theta$
	$d v=R^{2} \sin \theta d R d \theta d \phi$

$$
\begin{aligned}
& \int_{\mathrm{V}} \boldsymbol{\nabla} \cdot \mathbf{F d v}=\iiint 1 \mathrm{R}^{2} \sin (\theta) \mathrm{dRd} \theta \mathrm{~d} \phi \\
& =\int_{0}^{1} \mathrm{R}^{2} d R \int_{0}^{\pi} \sin (\theta) \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi \\
& =\left(\frac{1}{3}\right)(2)(2 \pi)=\frac{4 \pi}{3}
\end{aligned}
$$

Conclusions and Next Time

Summary

> Your choice to parameterize the contour/surface or map the vector field to something that is "naturally aligned" with the contour/surface
> Many EM problems have some sort of cylindrical or radial symmetry giving rise to circular contours and spherical and cylindrical test surfaces. Its often not a bad idea to map the vector field to match
> Stoke's and divergence theorems map between N dimensional and to an $\mathrm{N}-1$ dimensional integrals.
$>$ One side of each theorem is typically easier to evaluate than the other although this depends on the vector field and surface
$>$ Next week Dr. Wallen starts with Chapter 7
> Have a good weekend!

