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Stokes theorem

 The total flux of the curl vector field through surface S is equal to the sum of dot products 
between the tangent vector field of contour C and a vector field A at the contour

𝐀 x, y, z → vector field 𝐀 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

𝛁
𝜕
𝜕x𝐚𝐱

𝜕
𝜕y 𝐚𝐲

𝜕
𝜕z𝐚𝐳

𝛁 𝐀 ⋅ 𝐝𝐬  𝐀 ⋅ 𝐝𝐥 C is a closed contour that bounds S

𝛁 𝐀

𝐚𝐱 𝐚𝐱 𝐚𝐱
𝜕
𝜕x

𝜕
𝜕y

𝜕
𝜕z

A A A 𝐝𝐥 𝐝𝐥

𝐝𝐥

*credit: the internet

𝐝𝐒
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Example problem

 Show that stokes theorem is valid for the contour and surface shown in the figure.
 The closed contour C is defined by the intersection of the sphere and cylinder 
 The surface S is the part of the sphere that lies inside of the cylinder 

𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳

sphere → x y z 4

cylinder → x y 1

𝛁 𝐅 ⋅ 𝐝𝐬  𝐅 ⋅ 𝐝𝐥
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Example problem: Solution 1/7
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳

Vector F field is in cartesian 
coordinates

Surface S is easily 
described in spherical 
coordinates Contour C is easily 

described in cylindrical  
coordinates

Transform curl of F to 
spherical coordinates

Parameterize S,C to 
cartesian coordinates

Transform F to 
cylindrical coordinates
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Example problem: Solution 2/7
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳

𝛁 𝐅 ⋅ 𝐝𝐬

𝐀 𝛁 𝐅

𝐚𝐱 𝐚𝐱 𝐚𝐱
𝜕
𝜕x

𝜕
𝜕y

𝜕
𝜕z

F F F

x y 𝐚𝐱 x y 𝐚𝐲 0 𝐚𝐳 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

𝐀 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳 Convert to spherical coordinates and spherical base vectors
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Example problem: Solution 3/7
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳 𝛁 𝐅 ⋅ 𝐝𝐬

𝐀 x y 𝐚𝐱 x y 𝐚𝐲 0 𝐚𝐳 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

Fo
rm

ul
a 

Sh
ee

t

Note that its only necessary to 
compute AR since ds always 
points in the aR direction 
ds → dsRaR
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Example problem: Solution 4/7
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳 𝛁 𝐅 ⋅ 𝐝𝐬

𝐀 x y 𝐚𝐱 x y 𝐚𝐲 0 𝐚𝐳 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

A sin θ cos ϕ A sin θ sin ϕ A

x R sin θ cos ϕ
y R sin θ sin ϕ

A R sin θ cos ϕ sin θ sin ϕ · sin θ cos ϕ sin θ sin ϕ

A R sin θ cos ϕ sin θ sin ϕ

𝐀 A 𝐚𝐫 ⋯
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Example problem: Solution 5/7

𝛁 𝐅 ⋅ 𝐝𝐬 A ds

𝑅 sin θ cos ϕ sin θ sin ϕ 𝑅 sin θ dθdϕ

sphere → x y z 4
cylinder → x y 1

x y z 4 x y 1

z 3 → 𝑧 3

x

z

θ3

1

θ ∈ 0, tan  
1
3

ϕ ∈ 0, 2𝜋
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Example problem: Solution 6/7

𝛁 𝐅 ⋅ 𝐝𝐬 A ds

𝑅 sin θ cos ϕ sin θ sin ϕ 𝑅 sin θ dθdϕ

𝑅 sin θ cos ϕ sin ϕ dθdϕ

𝑅 sin θ dθ
 

𝟎
cos ϕ sin ϕ dϕ

𝟐𝝅

𝟎

𝑅 sin θ dθ
 

𝟎
cos ϕ dϕ

𝟐𝝅

𝟎
sin ϕ dϕ

𝟐𝝅

𝟎
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Example problem: Solution 7/7

𝛁 𝐅 ⋅ 𝐝𝐬 A ds

𝑅 sin θ dθ
 

𝟎
cos ϕ dϕ

𝟐𝝅

𝟎
sin ϕ dϕ

𝟐𝝅

𝟎

R sin θ dθ
 1

2ϕ
1
2 sin 2ϕ

1
2ϕ

1
2 sin 2ϕ

0

𝛁 𝐅 ⋅ 𝐝𝐬 0
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In class exercise
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳

𝐅 ⋅ 𝐝𝐥

Let’s solve the other side
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In class exercise: Solution 1/2
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳 𝐅 ⋅ 𝐝𝐥

Fo
rm

ul
a 

Sh
ee

t

Note that its only necessary to compute AΦ
since dl always points in the aΦ direction 
dl → r dΦ aΦ

ϕ ∈ 0, 2𝜋
@

z 3
𝑟 1
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In class exercise: Solution 2/2
𝐅 xz𝐚𝐱 yz𝐚𝐲 xy𝐚𝐳 𝐅 ⋅ 𝐝𝐥

A sin ϕ A cos ϕ A

A xz sin ϕ yz cos ϕ

x r cos ϕ
y r sin ϕ

A rz cos ϕ sin ϕ rz cos ϕ sin ϕ

A 0

𝐅 ⋅ 𝐝𝐥 𝟎
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Divergence Theorem
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Divergence theorem

 The volume integral of the divergence of A is equal to the flux of A through S where S bounds A
 The sum of infinitesimal outward flows across vector field A within volume V is equal to the total 

flux of A through S where S bounds A
 Wikipedia: sum of all sources of the field in a region (with sinks regarded as negative sources) 

gives the net flux out of the region

𝐀 x, y, z → vector field 𝐀 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

𝛁
𝜕
𝜕x𝐚𝐱

𝜕
𝜕y 𝐚𝐲

𝜕
𝜕z𝐚𝐳 𝛁 ⋅ 𝐀

𝜕
𝜕x A

𝜕
𝜕y A

𝜕
𝜕z A

𝛁 ⋅ 𝐀dv  𝐀 ⋅ d𝐬 S is a closed surface that bounds V
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Example problem
 Find the flux of the vector field F over the unit sphere 

using both sides of the divergence theorem equality

𝐅 z𝐚𝐱 y𝐚𝐲 x𝐚𝐳

unit sphere → x y z 1𝛁 ⋅ 𝐅dv  𝐅 ⋅ d𝐬
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Example problem: Solution 1/4
 Find the flux of the vector field F over the unit sphere 

using both sides of the divergence theorem equality

𝐅 z𝐚𝐱 y𝐚𝐲 x𝐚𝐳

unit sphere → x y z 1𝐅 ⋅ d𝐬

Fo
rm

ul
a 

Sh
ee

t

Note that its only necessary to 
compute AR since ds always 
points in the aR direction 
ds → dsRaR

𝐅 A 𝐚𝐱 A 𝐚𝐲 A 𝐚𝐳

𝐅 A 𝐚𝐫 A 𝐚 A 𝐚𝛟
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Example problem: Solution 2/4
 Find the flux of the vector field F over the unit sphere 

using both sides of the divergence theorem equality

𝐅 z𝐚𝐱 y𝐚𝐲 x𝐚𝐳

unit sphere → x y z 1𝛁 ⋅ 𝐅dv  𝐅 ⋅ d𝐬

F sin θ cos ϕ F sin θ sin ϕ F cos θ F

x R sin θ cos ϕ
y R sin θ sin ϕ

F sin θ cos ϕ z sin θ sin ϕ y cos θ x

z R cos θ

F R sin θ cos ϕ cos θ R sin θ sin ϕ R sin θ cos ϕ cos θ

F 2R sin θ cos ϕ cos θ R sin θ sin ϕ
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Example problem: Solution 3/4

𝐅 ⋅ d𝐬 F 𝑅 sin θ dθdϕ

2R sin θ cos ϕ cos θ R sin θ sin ϕ R sin θ dθdϕ

R 2sin θ cos θ cos ϕ sin θ sin ϕ dθdϕ

R 𝟐 sin θ cos θ dθ
𝝅

𝟎
cos ϕ dϕ

𝟐𝝅

𝟎
sin θ dθ

𝝅

𝟎
sin ϕ dϕ

𝟐𝝅

𝟎

I1 I2 I3 I4
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Example problem: Solution 4/4

sin ϕ dϕ
𝟐𝝅

𝟎

1
2ϕ

1
4 sin 2ϕ π

sin θ cos θ dθ
𝝅

𝟎
𝟎I1 Integration by substitution 

cos ϕ dϕ
𝟐𝝅

𝟎

I2 Not necessary since I1 = 0

sin θ dθ
𝝅

𝟎

1
3 2 sin θ cos θ

4
3

I3

I4

Trigonometric identity

Trigonometric identity

𝐅 ⋅ d𝐬 I1 I2 + I3 I4
4π
3
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In class exercise:
 Find the flux of the vector field F over the unit sphere 

using both sides of the divergence theorem equality

𝐅 z𝐚𝐱 y𝐚𝐲 x𝐚𝐳

unit sphere → x y z 1𝛁 ⋅ 𝐅dv

Let’s solve the other side
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In class exercise: Solution 1/1
𝐅 z𝐚𝐱 y𝐚𝐲 x𝐚𝐳

𝛁 ⋅ 𝐅
𝜕
𝜕x A

𝜕
𝜕y A

𝜕
𝜕z A

𝜕
𝜕x z

𝜕
𝜕y y

𝜕
𝜕z x 1

Fo
rm

ul
a 

Sh
ee

t

𝛁 ⋅ 𝐅dv 1 R sin θ dRdθdϕ

R 𝑑𝑅 sin θ dθ dϕ

1
3 2 2π

4π
3
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Conclusions and Next Time 
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Summary
 Your choice to parameterize the contour/surface or map the vector field to something 

that is “naturally aligned” with the contour/surface
 Many EM problems have some sort of cylindrical or radial symmetry giving rise 

to circular contours and spherical and cylindrical test surfaces. Its often not a 
bad idea to map the vector field to match

 Stoke’s and divergence theorems map between N dimensional and to an N-1 
dimensional integrals.
 One side of each theorem is typically easier to evaluate than the other although 

this depends on the vector field and surface

 Next week Dr. Wallen starts with Chapter 7
 Have a good weekend!


