
1

See video on how this course is organised in Youtube

Self-study guide

Week 1

Keywords: Introduction, Permutation matrices, Block matrix notation,
Gaussian elimination, Back-substitution, LU -factorisation.

Homework: Problems 9, 10, 21 and 26. In addition, solve any additional
four problems from 1-27 to gain extra points. See outline of Week 1 in

Youtube

Pages: 3-34.

Synopsis: During the first week we prepare for proving the existence of the
Cholesky factorisation by discussing permutation matrices, LU -factorisation,
block matrix notation, and recursive definition of matrix algorithms. There
is lots of revision material on Gaussian elimination that can be skipped, so
do not worry about the large number of pages.

Week 2

Keywords: Cholesky factorisation, fill-in, fill-in reducing permutation, min-
imum degree ordering.

Homework: Problems, 29, 30, 35 and 37. In addition, solve any additional See outline of Week 2 in
Youtubefour problems from 28-37 to gain extra points.

Pages: 35-49.

Synopsis: The topic of the second week is Cholesky factorisation of sparse
matrices. First, we prove existence of the Cholesky factorisation for s.p.d.
matrices without taking sparsity into account. Our existence proof uses
block matrix notation and induction with respect to dimension of the ma-
trix. Unfortunatelly, the Cholesky factor of a sparse matrix can be dense.
To mitigate this, we discuss methods for predicting location of non-zero en-
tries in the factor without actually computing it. Then we introduce the
minimum degree ordering method with the aim of obtaining a sparse factor
by permuting the matrix before computing it’s Cholesy factorisation.

https://youtu.be/IyizKtHWGtY
https://youtu.be/88LhTSRFk8Q
https://youtu.be/88LhTSRFk8Q
https://youtu.be/5prrWLA_XVA
https://youtu.be/5prrWLA_XVA

2

Chapter 1

Direct solution of sparse
linear systems

In this Chapter, we study solution methods for linear systems: Find x ∈ Rn
s.t.

Ax = b, (1.1)

where b ∈ Rn and the coefficient matrix A ∈ Rn×n is large, sparse, symmet-
ric and positive definite (s.p.d.). By sparse matrix, we mean a matrix with
mostly zero entries. If a matrix is not sparse it is called as a dense matrix.

Large, sparse, s.p.d. coefficient matrices are related, e.g., to solution of
partial differential equations (PDEs) using finite element method (FEM) or
finite difference method (FDM). For example, application of FDM to two
dimensional Laplace operator leads to a coefficient matrix having at most
five non-zero entries on every row. If accurate discretisation is required, the
dimension of these coefficient matrices can be of the order n ≈ 105 − 106.

We use the sparse Cholesky factorisation to solve (1.1). In sparse Cholesky
factorisation, sparse, s.p.d. matrix A ∈ Rn×n is decomposed as

P TAP = LLT , (1.2)

where P ∈ Rn×n is a permutation matrix and L ∈ Rn×n is a lower triangular
matrix. As a permutation matrix P is invertible, and equation (1.1) is
equivalent to

P TAPP−1x = P Tb and LLTP−1x = P Tb.

Hence, the solution of (1.1) is obtained by solving the auxiliary problems

Lz = P Tb, LTy = z, and setting x = Py.

3

4 CHAPTER 1. SPARSE LINEAR SYSTEMS

As L is a lower triangular matrix, the first two equations above are solved
using back-substitution.

If P = I in (1.2), it becomes the Cholesky factorisation of A that is
related to the Gaussian elimination process. Recall that writing the row-
operations conducted during the Gaussian elimination process using elim-
ination matrices yields the LU -factorisation of the coefficient matrix. In
LU -factorisation, matrix A is written as A = LU where L is a lower trian-
gular and U an upper triangular matrix. The Cholesky factorisation is de-
rived using the same elimination matrices but taking advantage of symmetry
and positive definiteness of A. In sparse Cholesky factorisation, additional
permutations are used to obtain a sparse factor L for a sparse matrix A.

To convince the reader that sparse matrices appear in practice, we be-
gin this Chapter by application of finite difference method to solution of the
Poisson’s equation that results in a linear system with a sparse, s.p.d. coeffi-
cient matrix. Next, we discuss how sparse matrices are stored in the memory
of a computer. Then we prepare to prove existence of the Cholesky factorisa-
tion by recalling the Gaussian elimination process and LU -factorisation. Our
existence proof uses block matrix notation that is discussed next. Finally,
we show existence of the Cholesky factorisation and introduce minimum de-
gree ordering method for obtaining a sparse factor L for a sparse matrix A.
We end the section by studying numerical stability or accuracy of solving
linear systems using Cholesky factorisation computed using floating-point
numbers.

1.1 Preliminaries

1.1.1 Permutation matrices

In this section, we discuss permutation matrices that encode information
on changing the order of rows or the columns of a matrix. Vector p ∈ RnSee video on permuta-

tion matrices in Youtube is called as a permutation vector, if it’s entries satisfy the conditions: pi ∈
{1, . . . , n} and pi 6= pj for all i, j ∈ {1, . . . , n}, i 6= j. This is, a permutation
vector is a re-ordering of

[
1 · · · n

]
. Matrix P ∈ Rn×n is called as a

permutation matrix, if

P =
[
ep1 · · · epn

]
where p ∈ Rn is a permutation vector.

As P has orthonormal columns it is unitary, i.e., P−1 = P T .

Let P ∈ Rn×n be a permutation matrix corresponding to permutation

https://youtu.be/TbGWHZ_ph50
https://youtu.be/TbGWHZ_ph50

1.1. PRELIMINARIES 5

vector p ∈ Rn and split A,B ∈ Rn×n into column and row vectors as

A =
[
a1 · · · an

]
and B =

bT1
...

bTn

 .
Recall that eTi A and Aei are the ith row and column of a matrix A ∈
Rn×n

’
respectively. By direct computation

APei = Aepi = api and eTi P
TB = (Pei)

TB = eTpiB = bTpi .

Hence, these operations reorder the columns and rows according to permu-
tation vector p, this is,

AP =
[
ap1 · · · apn

]
and P TB =

bTp1
...

bTpn

 .
Example 1.1. The permutation matrix changing rows 2 and 3 of a 3 × 3-
matrix is related to the permutation vector is p =

[
1 3 2

]
and obtained

simply as

P =
[
e1 e3 e2

]
=

1 0 0
0 0 1
0 1 0

 .
1.1.2 Problems

P1. (0.5p) Let

A =

1 2 3 4
5 6 7 8
9 10 11 12

 .
Find the permutation matrix corresponding to operations

(a) Swap rows 2 and 3

(b) Swap column 1 and 4

(c) Order rows as 3, 2, 1

P2. (0.5p) Prove the claim:

Let A ∈ Rn×n have orthonormal column vectors. Then A is unitary.

6 CHAPTER 1. SPARSE LINEAR SYSTEMS

1.2 Block matrix notation

Block matrix notation is extensively used in this lecture note. Hence, this
section should be studied with care.

See video introduction
to block matrices in
Youtube

In this section, we introduce block matrix notation which is used to
avoid index notation in proofs and derivations. We limit the discussion to
2× 2 block matrices, which are sufficient for our needs. Block matrices are
obtained by splitting entries of a matrix vertically and horizontally into sub-
matrices called blocks. In the following, we often divide matrices to 2 × 2
matrix blocks. For example, split A ∈ Rn×k as

A =

A11
n1×p

A22
n1×q

A12
n2×p

A22
n2×q

 where n = n1 + n2, and k = p+ q.

In the above equation, the size of each sub-matrix is written under it’s
symbol.

Example 1.2. Consider the block decomposition of 3× 3 matrix

A =

1 2 3
4 5 6
7 8 9


to 2× 2 block matrix as

A =

[
a11 aT12
a21 A22

]
where a11 = 1,a12 =

[
2
3

]
,a21 =

[
4
7

]
, A22 =

[
5 6
8 9

]
.

This is, we have sliced A as

 1 2 3

4 5 6
7 8 9

.

We proceed to derive 2 × 2 block-matrix-matrix-product formula. Let
A ∈ Rn×k, B ∈ Rk×m, and recall the matrix-matrix product formula

AB ∈ Rn×m and (AB)ij =

k∑
l=1

ailblj .

Matrices are often written using their column and row vectors as

A =

aT1
...

aTn

 and B =
[
b1 · · · bm

]
,

https://youtu.be/aLwLPGlTUyw
https://youtu.be/aLwLPGlTUyw
https://youtu.be/aLwLPGlTUyw

1.2. BLOCK MATRIX NOTATION 7

where {ai}ni=1 ⊂ Rk and {bi}mi=1 ⊂ Rk. Observe, that we use column vectors,
hence, aT1 is a row vector. Using row and column vectors, the matrix-matrix
product AB can be written as

AB =
[
Ab1 · · · Abm

]
=

aT1B
...

aTnB

 =

aT1 b1 · · · aT1 bm
...

. . .
...

aTnb1 · · · aTnbm

 . (1.3)

Using the above formula gives a Lemma for computing 2× 2 block-matrix-
matrix-product: See video on computing

product of 2×2 matrices
in Youtube

Lemma 1.1. Let A =

A11
n1×p

A12
n1×q

A21
n2×p

A22
n2×q

 ∈ Rn×k and B =

 B11
p×m1

B12
p×m2

B21
q×m1

B22
q×m2

 ∈ See video on proving the
product formula of 2× 2
matrices in YoutubeRk×m Then

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
. (1.4)

Observe, that the 2×2 block-matrix-matrix product AB is computed similar
to the 2 × 2 matrix-matrix product. This holds in general for all block-
matrix-matrix-products. The sizes of matrix blocks must match in the sense
that all products appearing in (1.4) are well defined. We prove Lemma 1.1
after giving a helper result.

Lemma 1.2. Let
[
C
n×p

D
n×q

]
∈ Rn×k and

 F
p×m
G
q×m

 ∈ Rk×m for k = p + q.

Then [
C D

] [F
G

]
= CF +DG. (1.5)

Observe that the sizes of matrix blocks match in the sense that products
CF and DG are well defined.

Proof. Denote the row vectors of C,D and column vectors of F,G as

C =

cT1
...

cTn

 , D =

dT1
...

dTn

 , F =
[
f1 · · · fm

]
, and G =

[
g1 · · · gm

]
.

https://youtu.be/yX2yEKHihTc
https://youtu.be/yX2yEKHihTc
https://youtu.be/yX2yEKHihTc
https://youtu.be/OkIqHffuBBY
https://youtu.be/OkIqHffuBBY
https://youtu.be/OkIqHffuBBY

8 CHAPTER 1. SPARSE LINEAR SYSTEMS

We proceed to give a formula for computing entries of the product matrix[
C D

] [F
G

]
∈ Rn×m. The entry ij of the product matrix is obtained as

eTi
[
C D

] [F
G

]
ej

where ei ∈ Rn and ej ∈ Rm are the ith and jth unit vectors. A direct
calculation

eTi
[
C D

] [F
G

]
ej =

[
cTi dTi

] [fj
gj

]
= cTi fj + dTi gj = (CF)ij + (DG)ij

gives the formula [
C D

] [F
G

]
= CF +DG. (1.6)

Proof of Lemma 1.1. To prove (1.4) observe that by (1.3)

AB =


[
A11 A12

] [B11

B21

] [
A11 A12

] [B12

B22

]
[
A21 A22

] [B11

B21

] [
A21 A22

] [B12

B22

]
 .

Application of product formula (1.5) completes the derivation.

Example 1.3. Next, we illustrate how block matrix notation is used inSee video on Example
1.3 in Youtube proofs and show that the product of two n×n lower triangular matrices is a

lower triangular matrix. We formulate an induction proof with respect to the
dimension of the lower triangular matrix using suitable 2× 2 block division.

Base step n = 1: Trivially true.

Induction assumption: Product of two k × k lower triangular matrices
is lower triangular.

https://youtu.be/PleDWbAQVkA
https://youtu.be/PleDWbAQVkA

1.2. BLOCK MATRIX NOTATION 9

Induction step: Let L, T ∈ R(k+1)×(k+1) be lower triangular matrices.
Split

L =

 l111×1
0

l21
k×1

L22
k×k

 and T =

 t111×1
0

t21
k×1

T22
k×k

 ,
where L22, T22 lower triangular matrices. Using the 2×2 block matrix-matrix
product formula gives

LT =

[
l11t11 0

l21t11 + L22t21 L22T22

]
.

By induction assumption L22T22 is lower triangular matrix, which completes
the proof.

1.2.1 Problems

P3. (1p) Let

A =

A11
n×n

0

A21
m×n

A22
m×m

 and B =

B11
n×n

0

B21
m×n

B22
m×m

 .
(a) Compute the block-matrix-matrix product AB.

(b) Find the inverse matrix of A. Hint: find B11, B12, B22 such thatA11
n×n

0

A21
m×n

A22
m×m

B11
n×n

0

B21
m×n

B22
m×m

 =

[
I

n×n
0

0 I
m×m

]
.

List assumptions (if any) that you have to make on A11, A12, and
A22.

(c) Argue that detA = 0 implies that either detA11 = 0 or detA22 =
0.

P4. (1p) Let E =

 1
1×1

0
1×n

−a21
n×1

I
n×n

 .

(a) Compute the product E

 1 aT12
1×n

a21
n×1

A22
n×n



10 CHAPTER 1. SPARSE LINEAR SYSTEMS

(b) Find the inverse matrix of E using the formula derived in the
previuos problem. Check that your inverse is correct by computing
the product EE−1.

P5. (2p)

(a) Show that

det

 I
n×n

0

0 A22
m×m

 = detA22.

Hint: recall the Laplace expansion for computing determinants
and use induction with respect to parameter n.

(b) Modify the proof in (a) to show that

det

 I
n×n

A12
n×m

0 A22
m×m

 = detA22. (1.7)

P6. (0.5p)

(a) Compute

[
0 I
I 0

] [
I 0
0 A22

] [
0 I
I 0

]
and

[
0 I
I 0

] [
0 I
I 0

]
.

(b) Use properties of determinant, Problem 3, and (a) to show that

det

[
A11 0
0 I

]
= detA11.

P7. (1p) Consider the block matrix A =

A11
n×n

A12
n×m

0 A22
m×m

, where A11 and A22

are invertible matrices.

(a) Compute the product[
A11 0
0 I

] [
I A−111 A12A

−1
22

0 I

] [
I 0
0 A22

]
.

(b) Use, equation (1.7), Problems 3,4, and decomposition in (a) to
show that detA = detA11 detA22.

(c) Argue by Problem 3 that detA = detA11 detA22 even if A11 or
A22 are not invertible.

1.2. BLOCK MATRIX NOTATION 11

P8. (1p) Let

M =



2 0 0 0 0 0
0 3 0 0 0 0
0 0 4 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

 . (1.8)

(a) Use suitable 2× 2 block decomposition to compute M2.

(b) Use inverse matrix formula from Problem 3 to compute M−1.

1.2.2 Back-substitution in block matrix notation

This section gives a recursive definition of the back-substitution algorithm.
Using recursion is necessary to express the algorithm in block matrix nota-
tion. This section should be studied with care.

In this section, we use block matrix notation to define the back - sub- See video on solution
of upper triangular sys-
tems in Youtube

stitution algorithm. Our definition is recursive with respect to dimension of
the linear system. Using such definition allows simple treatment of matrices
with different dimension using the block matrix notation. We use similar
techniques to study the LU and the Cholesky factorisations.

Consider the linear system: Find x ∈ Rn satisfying

Ux = b,

where the coefficient matrix U ∈ Rn×n is upper triangular and b ∈ Rn.

Definition 1.1. Matrix U ∈ Rn×n is upper triangular, if

Uij = 0 for i > j.

This is

U =


u11 u12 · · · u1n

u22 · · · u2n
. . .

...
unn

 or U =


· · ·

· · ·
.. .

...
#

 .
Here we use notational convention where the location of non-zero entries in
the matrix is indicated by # and zero entries are omitted. Such convention

https://youtu.be/ugxuO2duQKA
https://youtu.be/ugxuO2duQKA
https://youtu.be/ugxuO2duQKA

12 CHAPTER 1. SPARSE LINEAR SYSTEMS

is used when the location of non-zero entries is important but their value is
not.

Triangular linear systems are solved using back-substitution algorithm.
We use a definition that is recursive with respect to the dimension of the
coefficient matrix. The function triusolve(U,b) returns solution to linear
system Ux = b for invertible upper triangular matrix U ∈ Rn×n and b ∈ Rn.

For n = 1, triusolve(U, b) = b
U .

For n > 1, we use a recursive definition. First, split the linear system
Ux = b as [

U11 u12

0 u22

] [
x1

x2

]
=

[
b1

b2

]
(1.9)

where x2, b2 ja u22 are scalars, U11 ∈ R(n−1)×(n−1) and u12,x1,b1 ∈ Rn−1.
As U is invertible, u22 6= 0, U11 is invertible1, and

x2 =
b2
u22

.

First equation in (1.9) states U11x1 = b1−u12x2. As coefficient matrix U11 ∈
R(n−1)×(n−1) is invertible and upper triangular, x1 is obtained recursively as
x1 = triusolve(U11,b1 − u12x2). Hence,

triusolve(U, b) =

[
x1

x2

]
.

An example implementation of the above function is given below.See a video on imple-
menting the back sub-
stitution algorithm in
Youtube

function x = triusolve2(U,b)

n = size(U,2);
x = zeros(n,1);

% Define matrix and vector blocks.
U11 = U(1:(n-1),1:(n-1));
u12 = U(1:(n-1),n);
u22 = U(n,n);

b1 = b(1:(n-1));
b2 = b(n);

1See problem 7 on page 10

https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI

1.2. BLOCK MATRIX NOTATION 13

% solve x2.
x(n) = b2/u22;

if(n > 1)
% solve x1 using recursive function call.
x(1:(n-1)) = triusolve2(U11,b1-u12*x(n));
end

end

Using recursive function calls is not very efficient. A better strategy is
to update the vector b during the algorithm and use a for-loop to conduct
the computation. An example implementation using such update strategy is
given below.

function x = triusolve(U,b)

N = size(U,2);

x = zeros(N,1);

for n=N:-1:1
% Define matrix and vector blocks.

U11 = U(1:(n-1),1:(n-1));
u12 = U(1:(n-1),n);
u22 = U(n,n);

b1 = b(1:(n-1));
b2 = b(n);

% solve x(i).
x(n) = b2/u22;

% update vector b
b(1:(n-1)) = b1 - u12*x(n);

end

The above algorithm can be easily modified to solve lower triangular linear
systems.

1.2.3 Problems

P9. (2p) Use block matrix notation to give a recursive definition of function
trilsolve(L,b) that returns solution of linear system Lx = b where L
is a lower triangular matrix.

14 CHAPTER 1. SPARSE LINEAR SYSTEMS

P10. (2p)

(a) Give a recursive implementation of trilsolve in Matlab

(b) Modify recursive implementation in (a) to use the update strategy.

P11. (1p)

(a) Compute, how many arithmetic operations are needed to solve a
N ×N - upper triangular system.

(b) Measure the time required to solve upper triangular linear systems
using Matlab backslash, back substitution using recursive imple-
mentation, and back substitution using update strategy. Generate
random upper triangular matrices with dimension N = 10, 50,
100, 200, 300, 400, and 500 using commands rand and triu. For
each dimension, compute average solution time for each method
from 100 solves. Plot average solution times as a function of N
using a logarithmic scale. Does the result correspond to (a) ?

1.3 Finite difference method

This section gives an example application that leads to linear system with
large, sparse and s.p.d coefficient matrix. It is extra material and can be
skipped. Or just have a look at the video.

Let Ω ⊂ R2 be a bounded open set with sufficiently regular boundarySee video introduction
to finite difference
method

and recall the definition of the Laplace operator ∆ in R2,

∆ :=
∂2

∂x21
+

∂2

∂x22
.

The Poisson’s equation in Ω is: Find u ∈ C2(Ω) ∩ C(Ω) such that{
−∆u = f in Ω

u = 0 on ∂Ω
(1.10)

where f is a given function2. The Poisson’s equation is a simple model prob-
lem for other PDEs that appear, e.g., in electrical or mechanical engineering.

2Here C2(Ω) and C(Ω) are spaces of functions that have two derivatives in open set
Ω and functions that are continuous in closure of Ω, respectively. The differentiability is
required for the equation −∆u = f to be well defined, and continuity up to boundary for
the boundary condition u = 0 to be meaningful

https://www.youtube.com/watch?v=KCWqByKAaHM
https://www.youtube.com/watch?v=KCWqByKAaHM
https://www.youtube.com/watch?v=KCWqByKAaHM

1.3. FINITE DIFFERENCE METHOD 15

Several different numerical methods have been developed to find approxi-
mate solutions to (1.10). We use the finite difference method, in which one
seeks for an approximation to the point-wise values of u. The first step is
to derive the central difference approximation of the Laplace operator.

Let h ∈ R, h > 0. The Taylor expansion3 of the solution u with respect
to the variable x1 gives

u(x1 + h, x2) = u(x1, x2) +
∂u

∂x1
(x1, x2)h+

1

2

∂2u

∂x21
(x1, x2)h

2 +
1

6

∂3u

∂x31
(x1, x2)h

3 + h.o.t.

u(x1 − h, x2) = u(x1, x2)−
∂u

∂x1
(x1, x2)h+

1

2

∂2u

∂x21
(x1, x2)h

2 − 1

6

∂3u

∂x31
(x1, x2)h

3 + h.o.t.,

where h.o.t is used to denote higher order terms with respect to h. Sub-
tracting the two above equations and dividing by h2 gives

∂2u

∂x21
(x1, x2) ≈

u(x1 + h, x2)− 2u(x1, x2) + u(x1 − h, x2)
h2

. (1.11)

Similar computations for the x2 - component give

∂2u

∂x22
(x1, x2) ≈

u(x1, x2 + h)− 2u(x1, x2) + u(x1, x2 − h)

h2
. (1.12)

Combining (1.11) and (1.12) yields the central difference approximation of
the Laplace operator:

(∆u)(x1, x2) ≈
u(x1 − h, x2) + u(x1 + h, x2)− 4u(x1, x2) + u(x1, x2 − h) + u(x1, x2 + h)

h2
.

The accuracy of this approximation depends on h as well as on the properties
of the function u.

Next, consider the domain Ω = (0, 1)2 and a uniform N ×N -grid com-
posed of points

xij =
1

N − 1

[
i− 1
j − 1

]
for i, j ∈ {1, . . . , N}

see Figure 1.1. The distance between grid points is denoted by h := 1
N−1

and the value of u at the grid point xij by uij := u (xij).
Observe that the indices of interior grid points xij ∈ Ω and boundary

grid points xij ∈ ∂Ω are

I := { (i, j) | i, j ∈ {2, . . . , N − 1} }
3Observe that the expansion requires additional regularity of u, i.e u ∈ C3(Ω).

16 CHAPTER 1. SPARSE LINEAR SYSTEMS

and
B := { (i, j) | i, j ∈ {1, . . . , N} } \ I,

respectively. At interior grid points, the finite difference approximation
states that:

u(i−1)j + u(i+1)j + ui(j−1) + ui(j+1) − 4uij

h2
≈ f(xij). (1.13)

Due to the boundary condition u = 0 on ∂Ω,

uij = 0 (1.14)

at boundary grid points.
In finite difference method, one poses (1.13) as equality and seeks for

approximate point wise values of u satisfying the resulting linear system.
For notional simplicity, we denote the FD-approximation also by uij . The
challenge in solving uij is constructing the coefficient matrix of the linear
system (1.13)-(1.14), which requires careful index handling. First, collect
the variables uij into the vector U ∈ RN2

as

U =



u11

u12

u13
...

u21

u22

u23
...


It is helpful to explicitely define mapping σ(i, j) = (i − 1)N + j that aids
in index handling. The value uij resides in the element σ(i, j) of vector U.
The vector U satisfies

AU = b.

The non-zero entries of the coefficient matrix A ∈ RN2×N2
and vector b ∈

RN2
are:

aσ(i,j)σ(i−1,j) = 1, aσ(i,j)σ(i+1,j) = 1,

aσ(i,j)σ(i,j−1) = 1, aσ(i,j)σ(i,j+1) = 1,

aσ(i,j)σ(i,j) = −4, bσ(ij) = f(xij).

for interior indices i, j ∈ I and

aσ(i,j)σ(i,j) = 1, bσ(ij) = 0

1.3. FINITE DIFFERENCE METHOD 17

for boundary indices i, j ∈ B. The matrix A is assembled in the following
code.

N = 50;
A = sparse(Nˆ2,Nˆ2);
h = 1/(N-1);

ijmap = @(i,j)((i-1)*N + j);
active = []; % collect not boundary nodes here.

for i=1:N
for j=1:N

x(i,j) = (i-1)/(N-1); y(i,j) = (j-1)/(N-1);

if((i > 1) & (i < N) & (j > 1) & (j < N))

% This is the row corresponding to point (i,j)
I1 = ijmap(i,j);

active = [active I1];

A(I1, ijmap(i-1,j)) = -1/hˆ2;
A(I1, ijmap(i+1,j)) = -1/hˆ2;
A(I1, ijmap(i,j-1)) = -1/hˆ2;
A(I1, ijmap(i,j+1)) = -1/hˆ2;
A(I1, I1) = 4/hˆ2;

b(I1,1) = 1;
end

end
end

% system without active rows
A = A(active,active);
b = b(active);

% solve !
u = zeros(Nˆ2,1);
u(active) = A\b;

% visualize u.
U = reshape(u,N,N);
figure;S = surf(x',y',U);
set(S,'facecolor','interp');

18 CHAPTER 1. SPARSE LINEAR SYSTEMS

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Figure 1.1: Node numbering in i, j - system vs. node numbering correspond-
ing to vector U

The rows of A related to boundary indices are not interesting and they are
eliminated. Let P ∈ RN2×N2

be a permutation matrix ordering the rows of
U as

P TU =

[
UI

UB

]
where UI ∈ R(N−2)2 and UB ∈ R4(N−1) are the values of uij related to
interior and boundary grid points, respectively. Application of the same
splitting to A and b gives

P TAT =

[
AII AIB
ABI ABB

]
and P Tb =

[
bI
bB

]
.

As UB = 0 by (1.14), UI satisfies the system AIIUI = bI where the
matrix AII depends on the permutation P . The matrix AII ∈ RN2×N2

is
symmetric and has at most five non-zero entries on ever column. It’s sparsity
structure, i.e. location of non-zero entries, generated by the above code is
visualized in Figure 1.2 using the Matlab command spy(A). The accuracy
of the computed approximate point-wise values depends on h. If accurate
solutions are sought for, h is small and the number of grid points N can be
large. For example, N can be of the order N = 1000, which results to linear
system with dimension (N − 2)2 ≈ 106.

1.3.1 Problems

P12. (1p)

1.3. FINITE DIFFERENCE METHOD 19

nz = 288

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Figure 1.2: Nonzero entries of the matrix AII related to the linear system
given in equation (1.13).

(a) Derive the finite difference approximation of Laplace operator in
1D.

(b) Write a Matlab code to solve the 1D Poisson’s equation: find
u(x) ∈ C2((0, 1)) ∩ C([0, 1]) satisfying

−u′′(x) = 1 in (0, 1) and u(0) = u(1) = 0.

Plot the solution u.

P13. (2p) Let A ∈ R2n×2n, n > 3, satisfy

A =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 . (1.15)

(a) Let x satisfy Ax = 0. Show that x also satisfies[
xi+1

xi+2

]
= C

[
xi−1
xi

]
for i ∈ {1, . . . , 2n−2} and C =

[
−1 2
−2 3

]
(b) Use the Jordan decomposition of C to show that[

x2n−1
x2n

]
=

[
−2n+ 1 2n
−2n 2n+ 1

] [
x1
x2

]

20 CHAPTER 1. SPARSE LINEAR SYSTEMS

(c) Show that x2 and x1 satisfy[
2 −1

−2n− 1 2n+ 2

] [
x1
x2

]
= 0.

Use (b) to argue that N(A) = {0} and A is invertible.

P14. (1p) Consider the matrix A defined in (1.15).

(a) Show by direct computation that xTAx ≥ 0, for any x ∈ Rn i.e.
A is positive semi-definite matrix.

(b) Argue that any symmetric and positive semi-definite matrix with
trivial null-space is positive definite.

(c) Use (b) and Problem 13 to argue that A is positive definite.

1.4. COMPRESSED COLUMN STORAGE FORMAT 21

1.4 Compressed column storage format

This section discusses sparse matrix storage formats used in practical im-
plementation of sparse matrix data types. The aim is to highlight the fact
that computational complexity of accessing matrix rows, columns, and el-
ements depends on the chosen storage format. This has to be taken into
account when designing high-level matrix algorithms. It also explains why
sparse matrix literature gives several alternative ways to compute, e.g., the
Cholesky factorisation. This Section is extra material and can be skipped.

In this section, we discuss how sparse matrices are stored in the memory See video on CCS stor-
age format in Youtubeof a computer. The applied storage format affects the time required to access

matrix elements which should be taken into account when designing sparse
matrix algorithms.

A dense matrix is typically stored as a two-dimensional array of num-
bers, whereas only non-zero entries of a sparse matrix are stored. There are
several data structures used for this purpose, the most common ones be-
ing compressed row storage (CRS) and compressed column storage (CCS)
formats. For example, Matlab uses CCS format to store sparse matrices.

The compressed column storage format uses three arrays:

• Values: List of matrix entries ordered column wise.

• Row indices: The row index for each of the entries

• Column pointers: Index of the first entry of a every column in the
values and row index lists.

The CCS format is best illustrated by examples.

Example 1.4. Let

A =

[
a11 a12
a21 a22

]
.

In CCS format A is stored as

vals =
[
a11 a21 a12 a22

]
row ind =

[
1 2 1 2

]
col ptr =

[
1 3 5

]
Example 1.5. Let

B =

−2 1 0
1 −2 1
0 1 −2

 .

https://youtu.be/kTIC_ElOSZw
https://youtu.be/kTIC_ElOSZw

22 CHAPTER 1. SPARSE LINEAR SYSTEMS

In CCS format, B is stored as

vals =
[
−2 1 1 −2 1 1 −2

]
row ind =

[
1 2 1 2 3 2 3

]
col ptr =

[
1 3 6 8

]
In the above examples, the column pointer has an extra entry with value

length(vals)+1 that is used to simplify implementation of matrix operations.
If the extra entry is used, the column i is accessed simply as

A.col ptr = [1 3 6 8];
A.rowind = [1 2 1 2 3 2 3];
A.val = [-2 1 1 -2 1 1 -2];

col i = A.val(A.col ptr(i):(A.col ptr(i+1)-1));

The CCS format has constant access time for columns of a matrix. Ac-
cessing rows requires looping over the row index array, hence the required
time depends linearly on the size of the matrix. Element access is done by
first accessing the column and then finding the desired entry. If the row
indices are sorted, the desired entry can be sought for using, e.g., bisec-
tion search. In this case, the access time for the element ij has logarithmic
dependency on the number of nonzero entries in the column j.

The access times in Matlab can be studied with the following test code.
The resulting times are plotted in Figure 1.3

Nlist = floor(linspace(1,1e5,10));
row timer = []; col timer = []; ele timer = [];

for n = Nlist

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n);

I = randi(n,1e3,1); J = randi(n,1e3,1);

T = tic;
for j=1:1e3

x=A(I(j),J(j));

end
ele timer = [ele timer toc(T)/1e3];

T = tic;

1.4. COMPRESSED COLUMN STORAGE FORMAT 23

dimension of matrix
×10

4
0 2 4 6 8 10

ti
m

e
(s

)

×10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element
Column
Row

dimension of matrix
×10

4
0 2 4 6 8 10

ti
m

e
(s

)

×10
-6

2

2.5

3

3.5

4

4.5

5

5.5

6

Element
Column

Figure 1.3: Example of access times for elements, rows, and columns of the
one dimensional finite difference matrix A ∈ Rn×n in (1.15) as a function of
the dimension n. The test is done in Matlab.

for j=1:1e3
x=A(:,I(j));

end
col timer = [col timer toc(T)/1e3];

T = tic;
for j=1:1e3

x=A(I(j),:);

end
row timer = [row timer toc(T)/1e3];

end

figure; plot(Nlist,ele timer,'ro:',Nlist,col timer,'k*-.',Nlist,row timer,'bd--');
legend('Element','Column','Row');
ylabel('time(s)'); xlabel('dimension of matrix');

figure; plot(Nlist,ele timer,'ro:',Nlist,col timer,'k*-.');
legend('Element','Column');
ylabel('time(s)'); xlabel('dimension of matrix');

24 CHAPTER 1. SPARSE LINEAR SYSTEMS

1.4.1 Additional material

• For more information on sparse matrices in Matlab, see

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matri-
ces in matlab: Design and implementation. SIAM Journal on Matrix
Analysis and Applications, 13(1):333–356, 1992

1.4.2 Problems

P15. (0.5p) Let

A1 :=


1 0 2 0
3 0 4 0
0 5 0 6
7 8 9 10

 . (1.16)

and

N = 5;
A2 = 2*eye(N) + diag(-ones(N-1,1),1)+ diag(-ones(N-1,1),-1)

Write A1 and A2 using the compressed column storage scheme.

P16. (1p) Write a Matlab-function [val,row,col] = mat2ccs(A) that re-
turns the CCS representation of matrix A. Test your implementation
using matrices A1 and A2 defined in Problem 15.

P17. (1p) Write Matlab functions coli = ccs col(val,row,col,i) and
rowi = ccs row(val,row,col,i) that return column and row i of a
matrix represented in CCS format by val, row, and col-vectors. Repeat
the column and row access time test using your own functions.

1.5 Gaussian elimination

This is section is a review of the Gaussian elimination process. Read it to
refresh your memory, or skip it.

Let A ∈ Rn×n, b ∈ Rn, and consider the linear system: Find x ∈ RnSee video introduction
to Gaussian elimination
in Youtube

satisfying

Ax = b. (1.17)

https://youtu.be/rb5ILrTd1oQ
https://youtu.be/rb5ILrTd1oQ
https://youtu.be/rb5ILrTd1oQ

1.5. GAUSSIAN ELIMINATION 25

Gaussian elimination is an algorithm that transforms (1.17) to the equivalent
system: Find x ∈ Rn satisfying

Ux = b̃, (1.18)

where the coefficient matrix U ∈ Rn×n is upper triangular and b̃ ∈ Rn.
System (1.18) can be easily solved using the back substitution algorithm,
see Section 1.2.2.

We proceed by applying the Gaussin elimination to (1.17) in it’s com-
ponent form

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2

a31x1 + a32x2 + a33x3 + . . .+ a3nxn = b3
...

an1x1 + an2x2 + an3x3 + . . .+ annxn = bn

. (1.19)

For simplicity, assume that entry a11 6= 0. The case a11 = 0 is discussed in
Section 1.5.1. The variable x1 is solved from the first equation in (1.19) as

x1 =
b1
a11
−

n∑
j=2

a1j
a11

xj .

Using this expression, we eliminate variable x1 from equations {2, . . . , n} in
(1.19). This yields new linear system for x:

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a
(2)
22 x2 + a

(2)
23 x3 + . . .+ a

(2)
2n xn = b

(2)
2

a
(2)
32 x2 + a

(2)
33 x3 + . . .+ a

(2)
3n xn = b

(2)
3

...

a
(2)
n2 x2 + a

(2)
n3 x3 + . . .+ a(2)nnxn = b(2)n ,

(1.20)

with coefficients a
(2)
ij

a
(2)
ij = aij −

ai1
a11

a1j for i, j ∈ {2, . . . , n}.

This is, the transformed system is obtained by multiplying the first equation
in (1.19) with −ai1a−111 and adding it to the equation i in (1.19). Observe
that the resulting equations {2, . . . , n} in (1.20) are independent of x1.

26 CHAPTER 1. SPARSE LINEAR SYSTEMS

The above process is the first step of the Gaussian elimination algorithm.

Assuming that a
(2)
22 6= 0, the algorithm proceeds by eliminating variable x2

from the transformed equations {3,. . . ,n} in system (1.20). Under assump-

tion a
(2)
22 6= 0,

x2 =
b
(2)
22

a
(2)
22

−
n∑
j=3

a
(2)
2j

a
(2)
22

xj .

Identically, variable x2 is eliminated from the transformed equations {3, . . . , n}
in (1.20). New coefficients are computed as :

a
(3)
ij = a

(2)
ij −

a
(2)
i2

a
(2)
22

a2j for i, j ∈ {3, . . . , n}.

Assuming a
(i)
ii 6= 0 for i ∈ {3, . . . , n}, the above process can be repeated

until (1.19) has been transformed to the system

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a
(2)
22 x2 + a

(2)
23 x3 + . . .+ a

(2)
2n xn = b

(2)
2

a
(3)
33 x3 + . . .+ a

(3)
3n xn = b

(3)
3

...

a(n)nn xn = b(n)n

.

The matrix elements a
(i)
ii for i ∈ {1, . . . , n} are called pivots. Here and in

the following we set a
(1)
ij := aij .

We denote the coefficient matrix of intermediate transformed system on
step k ∈ {1, . . . , n} as A(k) ∈ Rn×n. For k = 1 we define A(1) := A. The
systems A(2)x = b(2) and A(3)x = b(3) are given in (1.19) and (1.20). For
k ∈ {2, . . . , n}, matrix A(k) has the block structure

A(k) =

[
U (k) A

(k)
12

0 A
(k)
22

]
.

where the matrix U (k) ∈ R(k−1)×(k−1) is upper triangular.

Example 1.6 demonstrates how the Gaussian elimination algorithm is
used in hand calculations.

Example 1.6. Consider the linear system

1.5. GAUSSIAN ELIMINATION 27


x1 + x2 + x3 = 0

x1 + 2x2 + 4x3 = 1

x1 + 3x2 + 2x3 = 7.

In matrix form, the above system is: find x ∈ R3 satisfying

Ax = b, where A =

1 1 1
1 2 4
1 3 2

 and b =

0
1
7

 .
When running Gaussian elimination algorithm by hand, matrix A and vector
b are written in the same table as 1 1 1 0

1 2 4 1
1 3 2 7

 .
The row operations are marked on the left hand side of the table.

−Y 1
−Y 1

 1 1 1 0
1 2 4 1
1 3 2 7

→
−2Y 2

 1 1 1 0
0 1 3 1
0 2 1 7

→
 1 1 1 0

0 1 3 1
0 0 −5 5

 .
The resulting linear system is solved using the back-substitution algorithm. 1 1 1 0

0 1 3 1
0 0 −5 5

 x3=−1→
[

1 1 1
0 1 4

]
x2=4→

[
1 −3

]
→ x1 = −3.

This process yields the solution x =
[
−3 4 −1

]T
.

Problems

P18. (0.5p) Solve the linear system
1 0 2 1
0 1 2 2
−2 1 0 1
−1 0 −4 2

x =


1
1
1
1


by hand using Gaussian elimination and back-substitution. Check your
solution using Matlab.

28 CHAPTER 1. SPARSE LINEAR SYSTEMS

P19. (1p) Let A ∈ Rn×n. Assume, that all pivots during Gaussian elimina-
tion are no-zeros. Estimate the total number of arithmetic operations
·,+,−, / in the elimination process of A.

Use the identity

n−1∑
x=1

(x+ α)k ≤
∫ n−1

0
(x+ α+ 1)k, (1.21)

for α ∈ R and k ≥ 0 to give a simple upper bound for the number of
operations. Identity (1.21) follows from geometric interpretation of the
sum, see Figure 1.4.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

(x+1).
2

Figure 1.4: Geometry interpretation of estimate (1.21)

1.5. GAUSSIAN ELIMINATION 29

1.5.1 Pivoting

In this section, we modify Gaussian elimination process to cope with zero
pivot elements. If pivot is zero, an additional pivoting step changing the
order of equations or unknowns is conducted before the elimination step.
Changing the order of rows and/or columns is expressed using permutation
matrices.

Example 1.7. Consider the linear system
x1 + x2 + x3 = 0

x1 + x2 + 4x3 = 3

x1 + 3x2 + 2x3 = 7.

To perform Gaussian elimination by hand, we write the system in a table: 1 1 1 0
1 1 4 3
1 3 2 7


First step of elimination yields:

−Y 1
−Y 1

 1 1 1 0
1 1 4 3
1 3 2 7

→
 1 1 1 0

0 0 3 3
0 2 1 7


Because the pivot a

(2)
22 = 0 we exchange rows two and three. This corresponds

to changing the order of equations in the original linear system and does not
change the solution. We obtain, 1 1 1 0

0 2 1 7
0 0 3 3

 . (1.22)

The coefficient matrix has now been transformed to upper triangular one,
and x is solved using back-substitution.

The permutation vector corresponding to changing rows 2 and 3 is p =[
1 3 2

]
and the related permutation matrix

P =

1 0 0
0 0 1
0 1 0

 .

30 CHAPTER 1. SPARSE LINEAR SYSTEMS

In this example, transformed system (1.22) is obtained by applying Gaussian
elimination without pivoting to linear system

P TAx = P Tb.

We show in Section 1.6 that changing the order of equations or un-
knowns during the elimination process does not change the solution of the
linear system. Further, identical transformed system is obtained by applying
Gaussian elimination without pivoting to the permuted linear system

P TAQ(Q−1x) = P Tb,

where P and Q are permutation matrices re-ordering eqautions and entries
of x.

When running the Gaussian elimination process by hand, the pivot is
chosen so that the resulting computations are as simple as possible. When
Gaussian elimination is implemented using a computer, pivoting is applied
on every step to improve numerical stability of the algorithm. Numerical
stability is discussed later in this course.

Different pivoting strategies on step k are:

• Column-pivoting: Choose entry a
(k)
ik for i ∈ {k, . . . , n} with largest

absolute value as pivot

• Row-pivoting: Choose entry a
(k)
kj for j ∈ {k, . . . , n} with largest

absolute value as pivot

• Full-pivoting: Choose entry a
(k)
ij for i, j ∈ {k, . . . , n} with largest

absolute value as pivot

1.5.2 Problems

P20. (0.5p) Solve the linear system
1 0 3 4
2 0 9 9
0 1 3 2
0 3 9 8

 =


1
1
1
1

 .
Using Gaussin elimination and back substitution.

1.5. GAUSSIAN ELIMINATION 31

1.5.3 Elimination matrices and LU-factorisation

In this section, we express row operations conducted during Gaussian elim-
ination process using elimination matrices. This representation allows us to
prove equivalence between the original and the transformed linear system.
It also yields the LU factorisation of a matrix A.

For simplicity, assume that all pivot elements are nonzero. On step k

of the elimination process, row k is first multiplied with a −a
(k)
ik

a
(k)
kk

and then

added to row i for i ∈ {k + 1, . . . , n}. The corresponding linear mapping is

fk(x)i =

xi i ≤ k

xi −
a
(k)
ik

a
(k)
kk

xk i > k
.

When pivots a
(k)
kk 6= 0, the mapping fk is invertible and

f−1k (x)i =

xi i ≤ k

xj +
a
(k)
ik

a
(k)
kk

xk i > k
.

First step of the elimination process can be stated as f1(Ax) = f1(b).
Let E1 ∈ Rn×n be the matrix representation of the linear mapping f1,
this is f1(x) = E1x. The matrix representation is obtained as E1 =[
f1(e1) f1(e2) · · · f1(en)

]
, where {ei}ni=1 are the Cartesian unit vectors.

This yields

E1 =


1
−a21
a11

1
...

. . .

−an1
a11

1


Using the above matrix representation gives the relation

A(2) = E1A and b(2) = E1b,

where A(2) is the transformed coefficient matrix obtained from step 1. Trans-
formation of linear system Ax = b to upper triangular form corresponds to

f(Ax) = f(b). (1.23)

where f = fn−1 ◦ . . . f1. Let Ek be the matrix representation of the linear
mapping fk. Then the final transformed system satisfies

A(n) = En−1 . . . E2E1A and b(n) = En−1 . . . E2E1b. (1.24)

32 CHAPTER 1. SPARSE LINEAR SYSTEMS

As A(n) is an upper triangular matrix, we denote U = A(n). Observe that the
structure of elimination matrices changes for every k making them difficult to
write using block matrix notation. This difficulty is addressed in Section 1.6
using recursive definition of the Gaussian elimination process.

Observe, that f−1 = f−11 ◦ . . . f
−1
n−1. Hence f has an inverse, and f(x) =

0⇒ x = 0. Thus

f(Ax− b) = 0⇒ Ax− b = 0.

This is, the solution to transformed linear system produced by Gaussian
elimination is also the solution to the original system.

Let A ∈ Rn×n be invertible matrix and assume non-zero pivots. By
(1.24) it holds that En−1 . . . E2E1A = U where U is an upper triangular
matrix. Inverting the product of elimination matrices yields the LU factori-
sation

A = LU for L = E−11 · · ·E
−1
n−1. (1.25)

By Problem 21 on page 32, the matrix L is lower-triangular. Recall that
entries of matrix L can be obtained directly from the row multipliers used
in the elimination process. This fact is tricky to prove using index notation,
hence, it is proven in Section 1.6 using block matrix notation.

Linear system

Ax = b

is reduced to two sub-problems using LU -factorisation of A = LU

Ly = b and Ux = y.

Both sub-problems have triangular coefficient matrices and can be efficiently
solved using back-substitution, see Section 1.2.2.

Problems

P21. (2p) Show that the inverse of any n×n lower triangular matrix is lower
triangular. Formulate an induction proof with respect to the dimension
n and use Problem 3 on page 9

P22. (1p) Let A ∈ Rn×n be invertible matrix. Show that on step k ∈
{2, . . . , n} of Gaussian elimination there exists a nozero pivot on column
k. Hint: argue by contradiction and recall the block form of A(k) and
use Problem 7 on page 10.

1.6. LU FACTORIZATION IN BLOCK MATRIX NOTATION 33

1.6 LU Factorization in block matrix notation

In this section, we use block matrix notation to define a recursive processSee video on introduc-
tion to recursive algo-
rithm for computing the
LU decomposition

that returns the LU factorisation of a given invertible matrix. Recall that
the elimination matrices related to the elimination process all have differ-
ent structure, and hence, they cannot be easily treated using block matrix
notation. This problem is remedied by recursive definition that allows us
to formulate the elimination process using only the first elimination matrix.
The given process could be easily turned into an existence proof of the LU
- decomposition. It also shows that the matrix L can be constructed from See video on recursive

algorithm for computing
the LU decomposition

multipliers related to row operations and there is no need to save or construct
elimination matrices E1, . . . , En−1 or their inverses during the elimination
process. We do not assume non-zero pivots and use row pivoting. In this
case, the LU factorisation of invertible matrix A ∈ Rn×n is

P TA = LU where P is a permutation matrix.

Next, we give a recursive definition of [P,L, U] = lu(A) that returns the LU
factorisation of invertible matrix A.

For n = 1, lu(A) = [1, 1, A].

For n > 1, we use recursive definition. First, we seek the permutation P
such that (P TA)11 6= 0. Next, split P TA as

P TA =

[
a11 aT12
a21 A22

]
where a11 ∈ R, a12,a21 ∈ R(n−1) and A22 ∈ R(n−1)×(n−1).

The elimination matrix corresponding to first step of Gauss algorithm is

E =

[
1 0
−a21
a11

I

]
and EP TA =

[
a11 aT12

0 A22 −
a21aT

12
a11

]
.

Let [P2, L2, U2] = lu(A22 −
a21aT

12
a11

) so that A22 −
a21aT

12
a11

= P−T2 L2U2 and

P TA =

[
1 0
a21
a11

I

] [
1 0

0 P−T2

] [
1 0
0 L2

] [
a11 aT12
0 U2

]
.

By direct computation,[
1 0

a21
a11

I

] [
1 0

0 P−T2

]
=

[
1 0

0 P−T2

] [
1 0

P T2
a21
a11

I

]
.

https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/Bjji2XkOEm0
https://youtu.be/Bjji2XkOEm0
https://youtu.be/Bjji2XkOEm0

34 CHAPTER 1. SPARSE LINEAR SYSTEMS

Thus [
1 0
0 P T2

]
P TA =

[
1 0

P T2
a21
a11

L2

] [
a11 aT12
0 U2

]
.

And finally

lu(A) =

[
P

[
1 0
0 P2

]
,

[
1 0

P T2
a21
a11

L2

]
,

[
a11 aT12
0 U2

]]
.

We deduce from the above algorithm that the Gaussian elimination with
pivoting is Gaussian elimination applied matrix

P TA,

where P collects all row permutations done during the process. Same holds
for row- and full-pivoting. The matrix L is obtained by collecting the mul-
tipliers from step k as

L =


1
α21 1
α31 α32 1

...
... . . .

. . .

αn1 αn2 . . . αn(n−1) 1

 where αij =
a
(j)
ij

a
(j)
jj

.

Problems

P23. (0.5p) Write down the elimination matrices used in Example 1.6 and
compute the corresponding LU-decomposition

P24. (0.5p) Write the LU decomposition corresponding to Example 1.7.

P25. (2p) Modify the definition of function lu to use column pivoting instead
of row pivoting.

P26. (2p) Write a recursive implementation of the function [P,L, U] = lu(A)
in Matlab. Device a test verifying that your decomposition is correct.

P27. (2p) Modify the recursive implementation of function lu to utilise the
update strategy.

1.7. CHOLESKY FACTORISATION 35

1.7 Cholesky factorisation

This section gives existence proof for the Cholesky factorisation, which should
be studied with care. The left-looking variant of the Cholesky decomposition
is included because it yields a simpler formula for computing entries of the
Cholesky factor and can be skipped.

Symmetric matrix A ∈ Rn×n, A = AT is also positive definite if there
exists α > 0 such that

xTAx ≥ α‖x‖22 for any x ∈ Rn. (1.26)

In this section, we prove that every such matrix has a Cholesky decomposi-
tion:

Theorem 1.1. Let A ∈ Rn×n be a symmetric and positive definite. Then
there exists a lower triangular matrix L ∈ Rn×n such that A = LLT .

The matrix L is called as the Cholesky factor of A. We prove Theorem 1.1
using induction with respect to the dimension of the matrix, block matrix
notation, and the following technical result:

Lemma 1.3. Let F ∈ Rn×m have a trivial null-space and A ∈ Rn×n be a See video proof of this
lemma in Youtubesymmetric and positive definite matrix. Then the m ×m matrix F TAF is

positive definite.

Note that by the rank-nullity Theorem it holds that m ≤ n.

Proof. As A is s.p.d. there exists α > 0 such that

xTF TAFx ≥ αxTF TFx for any x ∈ Rn. (1.27)

As F TF is symmetric, F TF = UΛUT where U ∈ Rm×m, U =
[
u1 · · · um

]
is unitary and Λ ∈ Rm×m, Λ = diag(λ1, . . . , λm) is a diagonal matrix. Ma-
trix F TF has the expansion

F TF =
m∑
i=1

λiuiu
T
i . (1.28)

As eigenvectors {ui} are orthonormal and N(F) = {0}, it follows that λi =
uTi F

TFui = ‖Fui‖22 > 0. Using (1.28) and estimating λi from below by
λmin := mini∈{1,...,m} λi gives

xTF TFx =

m∑
i=1

λi(x
Tui)

2 ≥ λmin
m∑
i=1

(xTui)
2 = λminx

Tx.

Noticing that λmin > 0 and using (1.27) completes the proof.

https://youtu.be/oljXDYZeMMQ
https://youtu.be/oljXDYZeMMQ

36 CHAPTER 1. SPARSE LINEAR SYSTEMS

proof of Theorem 1.1. The proof proceeds by induction with respect to the
dimension n. Base step n=1: A ∈ R, A > 0. Hence, L =

√
A.

Induction Assumption: The claim holds for n = k

Induction step: Let A ∈ R(k+1)×(k+1) and split

A =

[
a11 aT21
a21 A22.

]
where a11 ∈ R, a21 ∈ Rk and A22 ∈ Rk×k. Let

E =

[
1 0

−a−111 a21 I

]
.

By direct calculation

EAET =

[
a11 0

0 A22 − a21a
−1
11 aT21

]
.

Before applying the induction assumption to the matrix A22 − a21a
−1
11 aT21,See video on existence

proof of Cholesky fac-
torisation in Youtube

we have to show that it is positive definite. Observe that

(
A22 − a21a

−1
11 aT21

)
=
[

0
k×1

I
k×k

]
EAET

[
0
k×1

I
k×k

]T
(1.29)

As both
[
0 I

]T
and E have trivial null-spaces, so does F = ET

[
0 I

]T
.

Hence by (1.29) and Lemma 1.3, A22 − a21a
−1
11 aT21 is positive definite. Ap-

plying the induction assumption gives A22 − a21a
−1
11 aT21 = L2L

T
2 , where

L2 ∈ Rk×k is a lower triangular matrix. Note that a11 = eT1Ae1 > 0.
Hence,

EAET =

[
a11 0

0 A22 − a21a
−1
11 aT21

]
=

[√
a11 0
0 L2

] [√
a11 0
0 LT2

]
.

Inverting E gives

L =

[
1 0

a−111 a21 I

] [√
a11 0
0 L2

]
=

[√
a11 0
a21√
a11

L2

]
(1.30)

https://youtu.be/iThHIJERAF0
https://youtu.be/iThHIJERAF0
https://youtu.be/iThHIJERAF0

1.7. CHOLESKY FACTORISATION 37

The above proof is constructive, this is, it also gives a method for com-
puting L.

The function L = rchol(A) returns the Cholesky factorisation of a s.p.d.
matrix A ∈ Rn×n.

For n = 1, rchol(A) =
√
A.

For n > 1, we use recursive definition. Split A as

A =

[
a11 aT21
a21 A22

]
and let L2 = rchol(A22 −

a21aT
21

a11
).

By (1.30) we have

rchol(A) =

[√
a11 0
a21√
a11

L2

]

Similar to functions triusolve and lu, function rchol can be implemented
using recursive function calls or using the update strategy. The implemen-
tation utilising update strategy is called as the down-looking Cholesky fac-
torisation because the lower right corner is updated on each step of the
algorithm.

There exist (at least) two other strategies for computing the Cholesky
factorisation. The difference between these variants is the order in which
the matrix elements are accessed. One has to choose the best strategy for
each sparse matrix storage format and computer architecture. For example,
the down-looking variant accesses data column wise and works well with
compressed column storage format.

To derive the left-looking Cholesky factorisation, we split

L =


#
lTi lii
#
lTj lji # #

#

 and A =


sym.
aTi aii
#
aTj aji # #

#

 .
where indices i and j refer to rows i and j of matrices L and A. Computing
the matrix product LLT gives

#
lTi lii
#
lTj lji # #

#




li # lj
lii # lji #

#
#

#

 =


sym.
lTi li + l2ii
#
lTj li + ljilii #

#

 .

38 CHAPTER 1. SPARSE LINEAR SYSTEMS

Using the relation A = LLT yields

lTi li + l2ii = aii and lTj li + ljilii = aji. (1.31)

Note that the entry lii is not uniquely defined by (1.31). The usual choice,
lii ∈ R, lii > 0, gives the formulas

lii =

√√√√aii −
i−1∑
k=1

l2ik and lji =
1

lii
(aji −

i−1∑
k=1

likljk) for j > i (1.32)

We use (1.32) in Section 1.8.2 to the study location of non-zero entries of L.

1.7.1 Additional material

A different inductive existence proof for the Cholesky factorisation is
outlined in blog posting What Is Choklesky Factorisation.

A survey on Cholesky factorisation aimed for computer scientist is
given in

Nicholas J. Higham. Cholesky factorization. WIREs Computational
Statistics, 1(2):251–254, 2009

1.7.2 Problems

P28. (1p) Let A ∈ Rn×n be s.p.d.

(a) Starting from the definition (1.26), show that aii > 0 and A is
invertible. Hint : Show that system Ax = 0 has only zero solution,
i.e., N(A) = {0}.

(b) Show that all eigenvalues of A are positive.

(c) Assume, that A also satisfies A = F TF for some F ∈ Rn×n. Show
that F is invertible.

P29. (2p)

(a) Compute by hand the Cholesky decomposition of

1 2 2
2 8 4
2 4 15

.

(b) Show that the matrix

15 2 4
2 1 2
4 2 8

 is positive definite.

https://nhigham.com/2020/08/11/what-is-a-cholesky-factorization/

1.7. CHOLESKY FACTORISATION 39

P30. (2p) Write a recursive implementation of function rchol.

P31. (2p) Modify your recursive implementation of rchol to use the update
strategy.

P32. (1p) Let F ∈ Rn×n and A = F TF .

(a) Show that ‖A‖2 = ‖F‖22. Hint: Use the definition of operator

norm to obtain the estimates ‖A‖2 ≤ ‖F‖22 and ‖F‖2 ≤ ‖A‖1/22 .

(b) Validate (a) by numerical examples.

P33. (2p) Let AN ∈ RN×N be the 1D-finite difference matrix

AN =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Define matrices An ∈ Rn for n ∈ {N − 1, . . . , 1} as follows. Split
An ∈ Rn×n for n ∈ {N, . . . , 2} as

An =

 αn
1×1

aTn

an
(n−1)×1

Ân
(n−1)×(n−1)


and set An−1 = Ân − anaT

n
αn

.

(a) Compute the block matrix product to verify that An can be fac-
torised as

An =

[√
αn 0
an√
αn

I

] [
1 0
0 An−1

][√
αn

aT
n√
αn

0 I

]

(b) Use induction to show that

An =


1 + 1

(N+1−n) −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

 for n ∈ {N, . . . , 1}

(c) Give a formula for the Cholesky factor of AN .

40 CHAPTER 1. SPARSE LINEAR SYSTEMS

1.8 Sparse Cholesky Factorisation

This section demonstrates that the Cholesky factor of a sparse matrix can
be dense and that in some cases sparse factor can be obtained by a suitable
symmetric permutation. Core content.

Let L be a Choklesky factor of a sparse s.p.d. matrix A. In this Section,
we are study the location of the non-zero entries of L. Observe that L is anSee video on sparse

Cholesky factorisation
in Youtube

invertible lower triangular matrix, and thus lii 6= 0.

Entries lij of L satisfying

lij 6= 0 and aij = 0

are called fill-in. Fill-in increases the amount of memory required to store
L as well as the time required to compute it’s entries. To save computa-
tional resources, fill-in is reduced by permuting rows and columns of matrix
A before computing it’s the Cholesky factorisation. We call the resulting
factorisation

P TAP = LLT

where P ∈ Rn×n is a fill-in minimising permutation and L ∈ Rn×n a lower
triangular matrix as the sparse Cholesky factorisation.

Example 1.8. Consider

A =


1 1 1 1 1
1 10 0 0 0
1 0 10 0 0
1 0 0 10 0
1 0 0 0 10

 .

The Cholesky factor of A is

L =


1 0 0 0 0
1 3 0 0 0
1 −0.33333 2.9814 0 0
1 −0.33333 −0.37268 2.958 0
1 −0.33333 −0.37268 −0.42258 2.9277


Observe, that L is a full matrix. The fill-in is reduced by permuting the
entries of A. In our example, changing row 1 to row 5 and column 1 to

https://youtu.be/z9NNrKxQmPE
https://youtu.be/z9NNrKxQmPE
https://youtu.be/z9NNrKxQmPE

1.8. SPARSE CHOLESKY FACTORISATION 41

column 5 gives

P TAP =


10 0 0 0 1
0 10 0 0 1
0 0 10 0 1
0 0 0 10 1
1 1 1 1 1

 , (1.33)

where P is the permutation matrix corresponding to permutation vector[
5 2 3 4 1

]
. The Cholesky factor of P TAP is

L̃ =


3.1623 0 0 0 0

0 3.1623 0 0 0
0 0 3.1623 0 0
0 0 0 3.1623 0

0.31623 0.31623 0.31623 0.31623 3.0984

 .

The factor L̃ does not have any fill-in.

Finding an optimal permutation that minimizes the fill-in is an NP -hard
problem, hence, heuristics are used instead. In Section 1.8.2, we discuss
minimal degree-ordering, which is a method for finding fill-in reducing per-
mutations by utilising an efficient method for determining the location of
non-zero entries of L.

1.8.1 Problems

P34. (2p) Let

A =

[
a11 aT21
a21 I

]
for a11 ∈ R,a21 ∈ Rn−1.

(a) Show that the matrix A is positive definite if a11 > ‖a21‖22. Hint:
use the definition (1.26) with suitable splitting of x.

(b) Consider the linear system Ax = e1. Decompose x =
[
x1 xT2

]T
,

where x1 ∈ R and x2 ∈ Rn−1. Show that the solution satisfies

(a11 − aT21a21)x1 = 1 and x2 = −a21x1.

1.8.2 Non-zero structure of the Cholesky factor

This section gives tools for computing non-zero entres of L without knowing
their exact values. These tools are then used to construct fill-in reducing

42 CHAPTER 1. SPARSE LINEAR SYSTEMS

permutations. Core content.

The Cholesky factorisation of a sparse matrix is computed in two steps:
First, symbolic factorisation step constructs a fill-in reducing permutation
and finds the location of non-zero entries of the Cholesky factor. The lo-See video on graph as-

sociated to matrix in
Youtube

cation of nonzero entries is used to set up sparse matrix data structure for
storing L. The entries of the Cholesky factor are then computed in the
numerical factorization step.

The location of non-zero entries in the Cholesky factor of A ∈ Rn×n is
predicted from the undirected graph G(A) = (V(A), E(A)) consisting of a
set of vertices V(A) = {1, . . . , n} and a set of edges

E(A) = { (i, j) | aij 6= 0 i, j = 1, . . . , n and i > j }.

This is, vertices i and j of the graph G(A) are connected by an edge if the
entry aij is nonzero.

Example 1.9. Let

A1 =


1 1 1 1 1
1 10 0 0 0
1 0 10 0 0
1 0 0 10 0
1 0 0 0 10

 (1.34)

and

A2 =



20 0 1 1 1 1 0
0 20 1 1 0 0 1
1 1 20 0 0 0 0
1 1 0 20 0 0 0
1 0 0 0 20 0 0
1 0 0 0 0 20 0
0 1 0 0 0 0 20


(1.35)

The graphs corresponding to matrices A1 and A2 are visualized in Fig. 1.5

Off-diagonal entries of the Cholesky factor L are computed using Eq. (1.32)
as

lij =
1

ljj
(aij −

j−1∑
k=1

likljk), when i > j. (1.36)

Thus the entry lij can be non-zero (Possible numerical cancellations are
neglected in the following) if

aij 6= 0 (1.37)

https://youtu.be/OGj37Wmcfmw
https://youtu.be/OGj37Wmcfmw
https://youtu.be/OGj37Wmcfmw

1.8. SPARSE CHOLESKY FACTORISATION 43

Figure 1.5: Graphs corresponding to the matrices given in (1.34) and (1.35),
respectively.

or

ljk 6= 0 and lik 6= 0 for some k < j. (1.38)

Based on equation (1.37), the number of nonzeros in L will always be greater
or equal to the number of nonzeros in A.

Before proceeding, we need some notation. We call the ordered set See video on graph nota-
tion in Youtubeof vertices (v1, v2, . . . , vk) ⊂ V(A) as a path, if (vi, vi+1) ∈ E(A) for i ∈

{1, . . . , k − 1}. Vertex x ∈ V(A) is said to be reachable from vertex y ∈ V(A)
via set S ⊂ V(A), if there exists a path (y, v1, . . . , vk, x) satisfying4 vi ∈ S
for i ∈ {1, . . . , k}. The reachable set of y ∈ V(A) through S ⊂ E(A) is
defined as

Reach(y, S) = {x ∈ V(A) \ S | x is reachable from y via S }. (1.39)

Examples of path and reachable set are depicted in Figure 1.6.

The edges of G(L + LT) corresponding to non-zero off-diagonal entries See video proof of the
following Theorem in
Youtube.

of L are characterized by the following Theorem.

4to make the presentation simpler, we abuse notation and use the same notation also
for paths (y, x) and (x, v1, y).

https://youtu.be/CJUlejYY6xw
https://youtu.be/CJUlejYY6xw
https://youtu.be/57u2gy6ZIKI
https://youtu.be/57u2gy6ZIKI
https://youtu.be/57u2gy6ZIKI

44 CHAPTER 1. SPARSE LINEAR SYSTEMS

Figure 1.6: Path (5, 1, 3, 2, 7) is marked in red. Reachable set of vertex 2 via
S = {4} is {1, 3, 7}.

Theorem 1.2. Let A ∈ Rn×n be a s.p.d. and L the Cholesky factor of A.
Then

E(L+ LT) ⊂ { (i, j) | i ∈ Reach(j, {1, . . . j − 1}) }

Recall that diagonal entries of L are always nonzero as L is an invertible
lower triangular matrix. These entries are not edges of G(L+ LT).

Proof. Let i > j and (i, j) ∈ E(L + LT). Then lij 6= 0. We proceed by
induction with respect to j.

Base case: j = 1 If j = 1, li1 is nonzero iff ai1 6= 0.

Induction assumption: Assume that the claim hods for any j < t.

Induction step: Let j = t. Then lij 6= 0 if aij 6= 0 or there exists
index k < j such that lik 6= 0 and ljk 6= 0. By induction assumption,
there then exists paths (k, v1, . . . , vl, i) and (k, v̂1, . . . , v̂m, j) satisfying vq <
k for q ∈ {1, . . . , l} and v̂q̂ < k for q̂ ∈ {1, . . . ,m}. As paths can be
”walked” in both directions, there also exists path (i, vl, . . . v1, k). Thus,
(i, vl, . . . v1, k, v̂1, . . . , v̂m, j) is a path between vertices i and j between nodes
via vertices with index smaller than t.

A set including edges E(L+LT) is computed by finding the reachable set for
ever node of V(A). Such computation can be implemented as a depth-fist
search (DFS). A naive example implementation is given below.See Wikipedia for more

information on DFS

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search

1.8. SPARSE CHOLESKY FACTORISATION 45

% Call as : R = my reach(A, v, S)
%
% A is a matrix, v is the current node, S is a vector of nodes.
%
function [R,visited] = my reach(A, v, S, R, visited)

if(nargin == 3)
R = [];
visited(1:size(A,2)) = false;

end

visited(v) = true;

edges = find(abs(A(:,v)) > 0);

if(isempty(S))
R = setdiff(edges,v);
return;

end

for w=edges(:)'
if(not(visited(w)))

if(not(ismember(S,w)))
R = [R w];

else
[R,visited] = my reach(A,w,S,R,visited);

end
end

end
end

In the worst case, the cost of computing single reachable set using DFS
algorithm is O(|N(A)| + |E(A)|). Due to this potentially high cost, more
efficient methods have been developed for computing the location of non-zero
entries of L.

Example 1.10. Consider the matrix A2 in (1.35). The off-diagonal non-
zero entries of the Cholesky factor are obtained as See video on this exam-

ple on Youtube
• off-diagonal non-zeros on column 1 are reach(1, ∅) = {3, 4, 5, 6}.

• off-diagonal non-zeros on column 2 are reach(2, {1}) = {3, 4, 7}

• off-diagonal non-zeros on column 3 are reach(3, {1, 2} = {4, 5, 6, 7}

• off-diagonal non-zeros on column 4 are reach(4, {1, 2, 3}) = {5, 6, 7}

• off-diagonal non-zeros on column 5 are reach(5, {1, 2, 3, 4}) = {6, 7}

https://youtu.be/mPU6-nihORA
https://youtu.be/mPU6-nihORA

46 CHAPTER 1. SPARSE LINEAR SYSTEMS

• off-diagonal non-zeros on column 6 are reach(6, {1, 2, 3, 4, 5}) = {7}

The non-zeros of the computed factor are

× 0 0 0 0 0 0
0 × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× 0 × × × 0 0
× 0 × × × × 0
0 × × × × × ×


.

1.8.3 Problems

P35. (2p) Consider the matrix A ∈ R5×5 such that

A = zeros(5);
A(1,2) = 1; A(2,3) = 1;
A(2,5) = 1; A(3,4) = 1;
A = 100*eye(5) + A + A';

(a) Draw the graph G(A)

(b) For each vertex i ∈ V(A) compute the set reach(i, {1, . . . , i− 1}).
Use my reach.m to validate your answer.

(c) Predict the location of non-zero entries in the Cholesky factor of
A.

(d) Compute the Cholesky factorization of A and validate (c)

P36. (1p) Let s.p.d. A ∈ Rn×n be a banded matrix with bandwidth b ∈ N.
This is,

aij = 0 if i > j + b or i < j − b.

(a) Let n = 10 and b = 2. Draw the dependency graph G(A).

(b) Use G(A) to predict the location of nonzero entries of the corre-
sponding Cholesky factor L.

1.8.4 Minimum degree ordering

This section outlines how minimum degree ordering is used to construct a
fill-in reducing permutation. Core content.

1.8. SPARSE CHOLESKY FACTORISATION 47

Minimum degree (MD) ordering is a widely used heuristic for finding a
fill-in reducing permutation for the matrix A. The MD method constructs
a permutation vector p ∈ Rn by choosing entry pi from the set of free
indices {1, . . . , n} \ {p1, . . . , pi−1} so that the number of non-zero entries
that appear in the ith column of L is minimised. The number of non-zero
entries on column i does not depend on entries {pi+1, . . . , pn} and can be See video on MD on

Youtubecomputed using the my reach.m function. A naive implementation is given
below.

% Construct a fill-in reducing permutation vector for
% A using minimum degree ordering method. (this is a naive example
% implementation)

function p = my md(A)
n = size(A,1);
p = 1:n;

for i=1:(n-1)
i
% try all remaining entries as entry i
nnzLi = zeros(1,n);
for j=(i+1):n

tmp = p; tmp(i) = p(j); tmp(j) = p(i);

nnzLi(j) = length(unique(my reach(A(tmp,tmp), i, [1:(i-1)])));
end
% choose permutation minimising nnz in column i.
[~,I] = min(nnzLi((i+1):n));
I = I(1)+i;
pi = p(i); p(i) = p(I(1)); p(I) = pi;

end

Example 1.11. Consider the matrix

A =


1 1 1 1
1 10 0 0
1 0 10 0
1 0 0 10

 .

Initially, p =
[
1 2 3 4 5

]
. In the first step of MD-algorithm, we test

permutations

https://youtu.be/J32hqpD3Nz8
https://youtu.be/J32hqpD3Nz8

48 CHAPTER 1. SPARSE LINEAR SYSTEMS

Figure 1.7: The first step of the MD - algorithm

Figure 1.8: The second step of the MD - algorithm


1
2
3
4
5

 ,


2
1
3
4
5

 ,


3
2
1
4
5

 ,


4
2
3
1
5

 , and


5
2
3
4
1

 .
The resulting number of non-zeros in L(2 : end, 1) is computed using func-
tion my reach operator, see Fig. 1.7. In Fig. 1.7 and 1.8, letters {a, b, c, d, e}
refer to entries {1, 2, 3, 4, 5} of the original matrix that after permutation
have indices larger than 1 and 2, respectively. The alternative choices give
5, 2, 2, 2, 2 - nonzero entries in the first column. According to this, p1 = 2.
The process is then repeated for p2 see Fig. 1.8. Different options give
4, 2, 2, 2 - nonzero entries in L(3 : end, 2). Accordingly, we set p2 = 3.

1.8. SPARSE CHOLESKY FACTORISATION 49

Computing the number of non-zero entries in the column i, i.e. evalua-
tion of the my reach is the most expensive part of the MD method. This
cost is reduced in the approximate minimum degree (AMD) algorithm that
approximates the number of non-zeros in the column i. As AMD is much
faster and yields almost as good orderings as MD, latest versions of Matlab
only implement it.

1.8.5 Problems

P37. (2p)

(a) Find a fill-in reducing permutation P for the matrix A2 in (1.35)
using function my md.

(b) Compute the number of non-zeros in the Cholesky factors of A2

and P TA2P .

(c) Repeat (a) and (b) using permutation generated by Matlab func-
tion amd.

50 CHAPTER 1. SPARSE LINEAR SYSTEMS

Bibliography

[1] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in
matlab: Design and implementation. SIAM Journal on Matrix Analysis
and Applications, 13(1):333–356, 1992.

[2] Nicholas J. Higham. Cholesky factorization. WIREs Computational
Statistics, 1(2):251–254, 2009.

51

	Sparse linear systems
	Preliminaries
	Permutation matrices
	Problems

	Block matrix notation
	Problems
	Back-substitution in block matrix notation
	Problems

	Finite difference method
	Problems

	Compressed column storage format
	Additional material
	Problems

	Gaussian elimination
	Pivoting
	Problems
	Elimination matrices and LU-factorisation

	LU Factorization in block matrix notation
	Cholesky factorisation
	Additional material
	Problems

	Sparse Cholesky Factorisation
	Problems
	Non-zero structure of the Cholesky factor
	Problems
	Minimum degree ordering
	Problems

