TENTATIVE LECTURE SCHEDULE

		Date	Торіс
1.	Mon	13.09.	Course Introduction & Short Review of the Elements
2.	Wed	15.09.	Periodic Properties & Periodic Table & Main Group Elements (starts)
3.	Fri	17.09.	Short Survey of the Chemistry of Main Group Elements (continues)
4.	Mon	20.09.	Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
5.	Wed	22.09.	Transition Metals: General Aspects & Pigments
6.	Mon	27.09.	Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
7.	Wed	29.09.	Redox Chemistry
8.	Mon	04.10.	Crystal Field Theory
9.	Wed	06.10.	V, Nb, Ta & Metal Complexes & MOFs
10.	Fri	08.10.	Cr, Mo, W & 2D materials
11.	Mon	11.10.	Mn, Fe, Co, Ni, Cu & Magnetism & Superconductivity
12.	Wed	13.10.	EXTRA
13.	Fri	15.10.	Resources of Elements & Rare/Critical Elements & Element Substitutions
14.	Mon	18.10.	Lanthanoids + Actinoids & Luminescence (Down/Upconversion)
15.	Wed	20.10.	Inorganic Materials Chemistry Research

EXAM: Thu Oct. 28, 2021

PRESENTATION TOPICS/SCHEDULE

- Wed 06.10. Nb:
- Fri 08.10. Mo: Ahmed, Shamshad
- Mon 11.10. Mn: Majaniemi, Thakur Ru:
- Wed 13.10. Co: Ekholm, Olander, Syväniemi
 - Cu: Kolawole, Nguyen, Munib
- Fri 15.10. In: Kovanen, Ogunyemi
 - Te: Huhtakangas, Wallin, Kaarne
- Mon 18.10. Eu: Sonphasit, Ichanson, Tuisku
 - Nd: Jussila, Siuro, Perttu
 - U: Sinkkonen, Wennberg, Partanen

QUESTIONS: Lecture 4

- 1. Hf is mostly found in nature in trace amounts in Zr minerals. Why it is so easy for Hf to replace some of the Zr in these minerals?
- 2. Among the following four elements, Zn, Ti, Zr, and Hf, only one forms compounds at +III oxidation state. Just by looking at the Periodic Table, predict which element this is. Most importantly, explain why you predicted so.
- 3. ZnO is a wide bandgap semiconductor and promising material for many (opto)electrical applications.

(a) To enhance its n-type electrical conductivity through chemical substitution (= doping), which element has been used as a substituent?

(b) Nobody has so far been able to realize p-type conducting ZnO, even though ths would be useful for some applications. If you would like to challenge this goal, which element you would select for the substituent? Explain why?

- 4. Which element is commonly used as a substituent to create oxygen vacancies in ZrO_2 ? Why?
- 5. Why in ALD technique:
 - (a) Film thickness control is straightforward?
 - (b) Conformal coating is readily achieved?

- Hf⁴⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴
- Zr⁴⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶
- Ti⁴⁺ 1s² 2s² 2p⁶ 3s² 3p⁶
- $Zn^{2+} 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$
- Al³⁺ 1s² 2s² 2p⁶
- Hf $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^2$
- Zr 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d²
- Ti 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d²
- Zn $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$
- Al 1s² 2s² 2p⁶ 3s² 3p¹

Group →1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓Perio	d																	
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuc
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

IONIC RADII (in Å)

		Ti	Zr	Hf	Zn	AI
+2	CN-4	-	-	-	0.60	-
	CN-5	-	-	-	0.68	-
	CN-6	0.86	-	-	0.74	-
	CN-8	-	-	-	0.90	-
+3	CN-4	-	-	-	-	0.39
	CN-5	-	-	-	-	0.48
	CN-6	0.67	-	-	-	0.54
+4	CN-4	0.42	0.73	0.72	-	-
	CN-5	0.51	-	-	-	-
	CN-6	0.61	0.86	0.85	-	-
	CN-8	0.74	0.98	0.97	-	-

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

OCCURRENCE of the METALS: Zn, Ti, Zr, Hf

- Zn (d¹⁰, not transition metal) is the fourth most common metal <u>in use</u> (after Fe, AI and Cu) with an annual production of ca. 13 million tonns
- Among the transition metals, most common_are: Fe, Ti, Mn, Cr, ...
- **Ti**: widely distributed, many minerals, most common rutile and ilmenite
- **Zr** is found in more than 40 minerals
- Hf much more rare, no own minerals, in Zr minerals: Hf/Zr \approx 2 %

TITANIUM: Use as a metal / in metal alloys

- <u>Corrosion resistance</u>: pulp and marine industry, chemical processing, and energy production and storage application
- <u>High specific strength</u> (strength/weight ratio): automotive industry, aerospace applications, sports equipment, jewelry, eyeglass frames
- Inertness in human body: surgery/artificial implants
- DISADVANTAGE: cost (Ti 6 times more expensive than AI)

PRODUCTION OF TITANIUM

- Oxide minerals: rutile (TiO₂) or ilmenite (FeO-TiO₂; 97-98 % TiO₂)
- Oxides are transformed to TiCl₄ which is a liquid and can be distilled for purification, e.g. by chloride process:
 - $TiO_2 + 2CI_2 + 2C (800 °C) \rightarrow TiCI_4 + 2CO$
 - $2 \text{TiFeO}_3 + 7 \text{Cl}_2 + 6 \text{C} (900 \,^\circ\text{C}) \rightarrow 2 \text{TiCl}_4 + 2 \text{FeCl}_3 + 6 \text{CO}$
- TiCl₄ is reduced in argon with molten Mg (Kroll process)
 - TiCl₄ + 2Mg (1100 °C) \rightarrow Ti + 2MgCl₂
- MgCl₂ is reduced back to Mg such that it can be recycled
- Product: Titanium sponge (porous)

TiO₂:n valmistus

Sulfaattiprosessi: Pori

Raaka-aine (ilmeniitti) liuotetaan rikkihappoon ja syntyvästä liuoksesta titaani saostetaan titaanihydraattina. Hydraatti pestään, kalsinoidaan ja pintakäsitellään. Prosessi kestää 2 viikkoa.

Kloridiprosessi:

Raaka-aine (rutiili) kloorataan, jolloin muodostuu titaanitetrakloridia. Tetrakloridi hapetetaan (hapella) kaasufaasissa titaanidioksidiksi ja pintakäsitellään kuten sulfaattiprosessissakin. Kloridiprosessilla valmistetaan vain rutiilirakenteen omaavaa titaanidioksidia.

Zr & Hf

- Exactly the same size (due to shielding effect/lanthanide contraction)
- Of all the 4d-5d transition metal pairs, Zr and Hf are the most similar
- Separation of Hf from Zr very difficult
- Hf was discovered as late as 1922 (Zr more than 100 years earlier)
- Hf was the first element which was searched for and found based on the quantum theory (lat. *Hafnia* = Copenhagen)
- Differencies: density (atomic weight ratio Zr:Hf = 1.0:2.0)
 - neutron absorbtion (Hf 600-times stronger):
 different (opposite) uses in nuclear power plants

SEPARATION of Zr and Hf

- Zr: very low neutron absorption → used to make containers for nuclear fuel
- Hf: very high neutron absorption → used in control rods
- For the use of Zr in nuclear fuel containers it is crucial to ensure that the Zr metal used has extremely low Hf content
- Several techniques for the separation developed, below shown is a new advanced technique developed at University of Ghent

Role of Zinc in the structure and function of proteins

- Required for essential catalytic functions in enzymes
- Stabilizes the folding of protein subdomains
- Why Zinc ?
 - widely available in environment
 - fixed oxidation state (+II): completely resistant to redox changes and thus not affected by redox potentials in the organisms
 - prefers tetrahedral coordination (unlike many other metals): tetrahedral coordination of the metal site seems to be a key feature in most zinc enzymes
 - d¹⁰ and thus no crystal field effect: environment around Zn²⁺ is flexible to allow for the precise adjustment to the surroundings without an energy penalty

TiO₂ (important chemical produced worldwide)

- Crystal structures:
- White pigment:

- UV protection:
- Inert:
- Photocatalytic:
- Antibacterial:

Superhydrophilic:

- rutile, anatase, brokite
 - large refractive index
 - used in paints, paper, plastics, cosmetics, foods, tooth pastes, ...
 - sunscreens, plastics
 - filler material in pharmaceuticals
 - Akira Fujishima 1970s
 - water splitting
 - decomposition of organics with UV light
 - 3-times stronger compared to chlorine,
 1.5-times stronger compared to ozone
 - Akira Fujishima 1996
 - after UV radiation
 - water spreads (no droplets) on TiO₂
 - e.g. sauna mirrors

SUPERHYDROPHOBICITY

- ♦ Water forms perfect droplets on surface
 → surface extremely difficult to wet
 → Lotus effect
- Contact angle (θ_C): angle for liquid droplet at three-phase (liquid-gas-solid) boundary
- SUPERHYDROPHOBICITY: contact angle > 150°

- Y^{III}-forZr^{IV} substitution stabilizes the cubic ZrO₂ structure synthesized in various colours (gemstone & diamond simulant)
- Yttrium-stabilized zirconia (YSZ) for oxygen sensors and fuel cells owing to its low electronic conductivity but high oxide ion conductivity (Y³⁺→ Zr⁴⁺ → oxygen vacancies)

at many address of a

ZrO₂

 Used as industrial ceramics, protective coating (e.g. on TiO₂ pigment particles) and refractory material in e.g. insulation

HfO₂

- Similar (7-coordination) crystal structure to that of ZrO₂
- Very high melting point \rightarrow refractory material for insulation (e.g. in thermocouples) \rightarrow operates up to 2500 °C
- Multilayered HfO₂ coatings reflect sunlight & block heat conduction → passive cooling of buildings
 - \rightarrow several degrees cooler than surrounding materials
- HfO₂ high-κ dielectrics → dielectric constant 5 times higher compared to SiO₂ → high-κ material in DRAM (dynamic random access memory) and CMOS (complementary metal-oxide semiconductor) microelectronics devices
- Intel 2007 → replacement of SiO₂ as gate insulator in FETs (field-effect transistor)
 → deposition of high-quality amorphous films using ALD
- Partial substitution of Hf by Si (or AI) increases the crystallization temperature

smaller transistors \rightarrow lower gate voltage same electric fields \rightarrow thinner dielectric **CMOS transistor** $SiO_2 \rightarrow HIGH-k$ DIELECTRICS 1 Delein 0.2 mm intel. pentium 4 0.02 mm 2 nm gate gate Si drain source 0.0002 mm = 200nm 1005 15KV XI.38K

ZnO

- 4-coordination in hexagonal wurtzite or cubic zinc blende (diamond like) structure
- Additive in various applications: rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, first-aid tapes, etc.
- Wide-bandgap II-VI semiconductor
- Native doping due to excess zinc/oxygen vacancies/hydrogen \rightarrow n-type doping
- Al³⁺-for-Zn²⁺ doping for enhanced n-type doping
- Problem: p-type doping has not been achieved
- Attractive properties for optoelectronics: wide bandgap, tunable electrical properties, high transparency, high electron mobility → transparent electrodes, liquid crystal displays, energy-saving windows, electronics as thin-film transistors and light-emitting diodes

OXIDES (AI_2O_3 , ZnO, TiO₂, ZrO₂ & HfO₂) & ALD (atomic layer deposition) thin-film technology

EXAMPLES of APPLICATIONS

- ALD-HfO₂ (amorphous): high-k dielectrics
- ALD-ZrO₂ (amorphous): barrier coating
- ALD-TiO₂ (crystalline): photovoltaics
- ALD-ZnO (crystalline): thermoelectric material
- ALD-Al₂O₃ (amorphous): barrier and protective coating

Atomic Layer Deposition (ALD) Thin-Film Technique

- Gaseous precursors & Self-limiting surface reactions
- Precisely thickness-controlled, Large-area homogeneous & Conformal thin films

Electroluminescent display

Instrumentarium/Finlux/Planar

Atomic Layer Deposition (ALD) Technology

Conditions for high-*k* dielectrics

- High enough dielectric constant k
- Wide band gap for low leakage
- Stable no reaction with Si
- Good interface, low impurities

ALD publications annually

Periodic Table of ALD Processes

mons.wikimedia.org/w/index.php?curid=78838925

COMMON PRECURSORS in ALD

e.g. cyclopentadienyls

Most Common ALD METALS: AI, Zn, Ti, Hf

Common CO-REACTANTS (second precursor):

- Water H_2O (e.g. with TiCl₄, Al(CH₃)₃ or Zn(CH₂CH₃)₂) \rightarrow Oxides
- Ozone O_3 (e.g. with metal β -diketonates) \rightarrow Oxides
- Dihydrogensulfide H_2S (e.g. with $ZnCl_2$) $\rightarrow Sulfides$
- Ammonia $NH_3 \rightarrow Nitrides$

Advantages of ALD

- Relatively inexpensive method
- Excellent repeatability
- Dense and pinhole-free films
- Accurate and simple thickness control
- Large area uniformity
- Excellent conformality

- Gentle deposition process
- Organic/polymer films
- Inorganic/organic hybrid materials .oO

0

AN(.

CICADA WING

Peculiar surfacenanostructure

200-nm high nanopillars coated with a waxy layer

superhydrofobic

ZnO

Reversible change from hydrofobic to hydrophilic upon UV-radiation

CICADA WING + ZnO

- Conformal coating of the wing by a thin layer of ZnO (~20 nm) by means of ALD
- Reversible change from superhydrofobic to superhydrophilic upon UV-radiation

J. Malm, E. Sahramo, M. Karppinen & R. Ras, Chem. Mater. 22, 3349 (2010).

100 cycles (20 nm)

300 cycles (60 nm)

500 cycles (100 nm)

Visible-light absorbing TiO₂:curcumin thin films with ALD/MLD, A. Philip, R. Ghiyasi & M. Karppinen, *ChemNanoMat* **7**, 253 (2021).