Aalto University
School of Electrical
Engineering

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Ville Kyrki
21.9.2021

Today

- Markov decision processes

Learning goals

- Understand MDPs and related concepts.
- Understand value functions.
- Be able to implement value iteration for determining optimal policy.

Markov decision process

MDP

Environment observable

$$
o=s^{E}=s^{A}
$$

Defined by dynamics

$$
P\left(s_{t+1} \mid s_{t}, a_{t}\right)
$$

And reward function

$$
r_{t}=r\left(s_{t+1}, s_{t}\right)
$$

Solution e.g.
$a_{1, \ldots, T}^{*}=\max _{a_{1}, \ldots, a_{T}} \sum_{t=1}^{T} r_{t}$
Represented as policy $a=\pi\left(s^{4}\right)$

Markov property

- "Future is independent of past given the present"
- State sequence S is Markov iff \downarrow "if and only if"

$$
P\left(S_{t+1} \mid S_{t}\right)=P\left(S_{t+1} \mid S_{1, \ldots}, S_{t}\right)
$$

- State captures all history.
- Once state is known, history may be thrown away.
- Markov process is a memoryless random process, i.e. random state sequence S with the Markov property.
- Defined as (S, T)
- S : set of states
- $T: S \times S \rightarrow[0,1]$ state transition function
- $T_{t}\left(s, s^{\prime}\right)=P\left(s_{t+1}=s^{\prime} \mid s_{t}=s\right)$
- P can be represented as transition probability matrix
- State sequences called episodes

Markov reward process

Still no "decision"!

- Markov reward process =

Markov process with rewards

- Defined by (S, T, r, 子)
- S, T :as above
- $r: S \rightarrow \Re$ reward function
- $\gamma[0,1]$: discount factor
- Accumulated rewards in finite (H steps) or infinite horizon

$$
\sum_{t=0}^{H} \gamma^{t} r_{t} \quad \sum_{t=0}^{\infty} \gamma^{t} r_{t}
$$

- Return G: accumulated rewards from time t

$$
G_{t}=\sum_{k=0}^{H} \gamma^{k} r_{t+k+1}
$$

Why discount?
School of Electrical
Engineering
Return of $(A, B, C), \gamma=0.9 ?$

State value function for MRPs

- State value function $V(s)$ is expected cumulative rewards starting from state s

$$
V(s)=E\left[G_{t} \mid s_{t}=s\right]
$$

- Value function can be defined by Bellman equation

$$
\begin{aligned}
& V(s)=E\left[G_{t} \mid s_{t}=s\right] \\
& V(s)=E\left[r_{t+1}+\gamma V\left(s_{t+1}\right) \mid s_{t}=s\right]
\end{aligned}
$$

Markov decision process (MDP)

- Markov decision process defined by ($\mathrm{S}, A, T, R, \gamma$)
- S, $\gamma:$ as above
- A: set of actions (inputs)
- T: $S \times A \times S \rightarrow[0,1]$ $T_{t}\left(s, a, s^{\prime}\right)=P\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)$

- R: $S \times A \times S \rightarrow \Re$ reward function $r_{t}\left(s, u, s^{\prime}\right)=r\left(s_{t+1}=s^{\prime}, s_{t}=s, a_{t}=a\right)$

- Goal: Find policy $\pi(s)$ that maximizes cumulative rewards.

Policy

- Deterministic policy $\pi(S): S \rightarrow A$ is mapping from states to actions.
- Stochastic policy $\pi(a \mid s): S, A \rightarrow[0,1]$ is a distribution over actions given states.
- Optimal policy $\pi^{*}(s)$ is a policy that is better or equal than any other policy (in terms of cumulative rewards)
- There always exists a deterministic
 optimal policy for a MDP.

MDP value function

- State-value function of an MDP is expected return starting from state s and following policy π.

$$
V_{\pi}(s)=E_{\pi}\left[G_{t} \mid s_{t}=s\right]
$$

- Can be decomposed into
 immediate and future components using Bellman expectation equation

$$
\begin{aligned}
& V_{\pi}(s)=E_{\pi}\left[r_{t}+\gamma V_{\pi}\left(s_{t+1}\right) \mid s_{t}=s\right] \\
& V_{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) r\left(s, \pi(s), s^{\prime}\right)
\end{aligned}
$$

$$
+\gamma \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) V_{\pi}\left(s^{\prime}\right)
$$

Action-value function

- Action-value function Q is expected return starting from state s, taking action a, and then following policy π.

$$
Q_{\pi}(s, a)=E_{\pi}\left[G_{t} \mid s_{t}=s, a_{t}=a\right]
$$

			+1
			-1

- Using Bellman expectation equation

$$
\begin{aligned}
& Q_{\pi}(s, a)=E_{\pi}\left[r_{t}+\gamma Q_{\pi}\left(s_{t+1}, a_{t+1} \mid s_{t}=s, a_{t}=a\right)\right] \\
& Q_{\pi}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) r\left(s, a, s^{\prime}\right) \\
& \quad+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) Q_{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)
\end{aligned}
$$

Optimal value function

- Optimal state-value function is maximum value function over all policies.

$$
V^{*}(s)=\max _{\pi} V_{\pi}(s)
$$

- Optimal action-value function is maximum action-value function over all policies.

$$
Q^{*}(s, a)=\max _{\pi} Q_{\pi}(s, a)
$$

- All optimal policies achieve optimal state- and action-value functions.

Optimal policy vs optimal value function

- Optimal policy for optimal action-value function

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Optimal action for optimal state-value function
$\pi^{*}(s)=\arg \max _{a} E_{s^{\prime}}\left[r\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
$\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right)$

Value iteration

Do you notice that this is an expectation?

- Starting from $V_{0}^{*}(s)=0 \quad \forall s$
iterate
$V_{i+1}^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a^{\prime}, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V_{i}^{*}\left(s^{\prime}\right)\right)$
until convergence.
- Value iteration converges to $V^{*}(s)$.

Iterative policy evaluation

- Problem: Evaluate value of policy π.
- Solution: Iterate Bellman expectation back-ups.
- $V_{1} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{\pi}$
- Using synchronous back-ups:
- For all states s

From slide 11.

- Update $V_{k+1}(s)$ from $V_{k}\left(s^{\prime}\right)$
- Repeat
$V_{k+1}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left(r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right)$

$$
\begin{aligned}
V_{k+1}(s)= & \sum_{a} \pi(a \mid s) . \\
& \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right)
\end{aligned}
$$

$k=0$

V		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		

Greedy policy

$k=1$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$r=-1$ for all actions
$k=2$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	\longleftarrow	\leftarrow	$\stackrel{\downarrow}{\downarrow}$
\uparrow	$\stackrel{+}{4}$	$\stackrel{\uparrow}{\square}$	\downarrow
\uparrow	$\stackrel{\downarrow}{\downarrow}$	\square	\downarrow
$\stackrel{\uparrow}{\square}$	\rightarrow	\rightarrow	

Policy improvement and policy iteration

- Given a policy π, it can be improved by
- Evaluating V_{π}
- Forming a new policy by acting greedily with respect to V_{π}
- This always improves the policy.
- Iterating multiple times called policy iteration.
- Converges to optimal policy.

Computational limits - Value iteration

- Complexity $\mathrm{O}\left(|\mathrm{A} \| \mathrm{S}|^{2}\right)$ per iteration.
- Effective up to medium size problems (millions of states).
- Complexity when applied to action-value function $\mathrm{O}\left(|\mathrm{A}|^{2}|\mathrm{~S}|^{2}\right)$ per iteration.

Summary

- Markov decision processes represent environments with uncertain dynamics.
- Deterministic optimal policies can be found using statevalue or action-value functions.
- Dynamic programming is used in value iteration and policy iteration algorithms.

Next week: From MDPs to RL

- Readings
- SB Ch. 5-5.4, 5.6, 6-6.5

