

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Ville Kyrki 21.9.2021

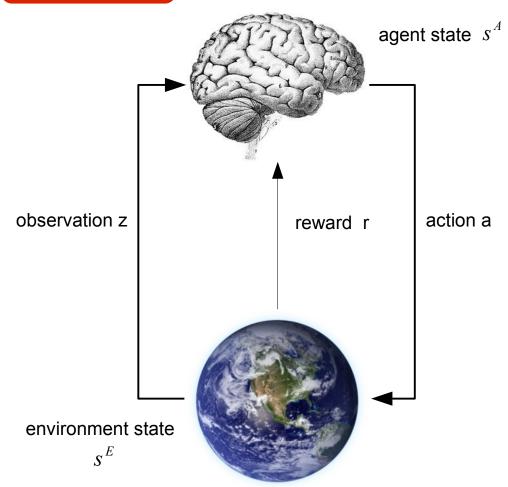
Today

Markov decision processes

Learning goals

- Understand MDPs and related concepts.
- Understand value functions.
- Be able to implement value iteration for determining optimal policy.

Markov decision process



MDP

Environment observable $o = s^E = s^A$

Defined by dynamics $P(s_{t+1}|s_t, a_t)$

And reward function $r_t = r(s_{t+1}, s_t)$

Solution e.g.

$$a_{1,...,T}^* = max_{a_1,...,a_T} \sum_{t=1}^{T} r_t$$

Represented as policy $a = \pi(s^A)$

Markov property

- "Future is independent of past given the present"

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1,...,S_t)$$

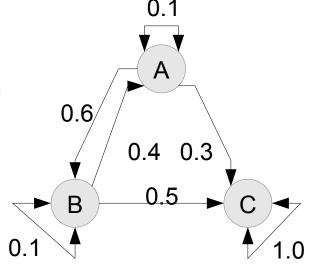
- State captures all history.
- Once state is known, history may be thrown away.

No "decision" here!

- Markov process is a memoryless random process, i.e. random state sequence S with the Markov property.
- Defined as (S,T)
 - S: set of states
 - $T: S \times S \rightarrow [0,1]$ state transition function

•
$$T_t(s, s') = P(s_{t+1} = s' | s_t = s)$$

- P can be represented as transition probability matrix
- State sequences called episodes

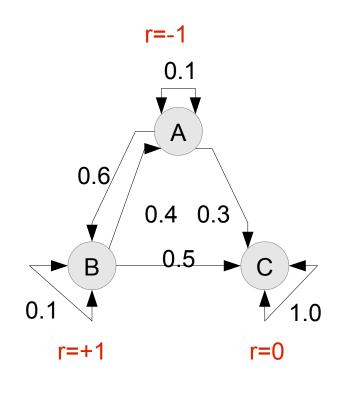


Still no "decision"!

Markov reward process

- Markov reward process =
 Markov process with rewards
- Defined by (S, T, r, γ)
 - S, T:as above
 - $-r: S \rightarrow \mathcal{R}$ reward function
 - $\gamma [0,1]$: discount factor
- Accumulated rewards in finite (H steps) or infinite horizon

$$\sum_{t=0}^{H} \mathbf{y}^{t} r_{t} \qquad \sum_{t=0}^{\infty} \mathbf{y}^{t} r_{t}$$



Return G: accumulated rewards from time t

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k+1}$$

Why discount?

State value function for MRPs

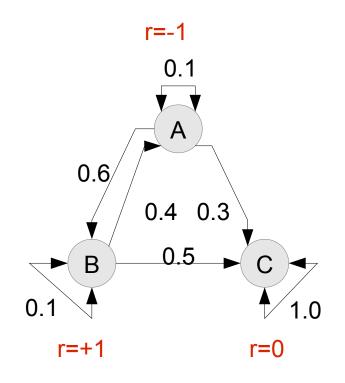
 State value function V(s) is expected cumulative rewards starting from state s

$$V(s) = E[G_t|S_t = s]$$

 Value function can be defined by Bellman equation

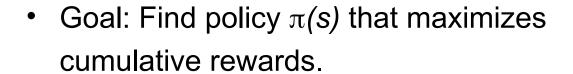
$$V(s) = E[G_t | s_t = s]$$

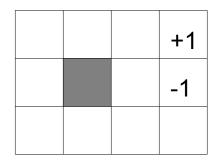
 $V(s) = E[r_{t+1} + \gamma V(s_{t+1}) | s_t = s]$



Markov decision process (MDP)

- Markov decision process defined by (S, A, T, R, y)
 - S, γ : as above
 - A: set of actions (inputs)
 - $T: S \times A \times S \rightarrow [0,1]$ $T_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$
 - $R: S \times A \times S \rightarrow \mathcal{R}$ reward function $r_t(s, u, s') = r(s_{t+1} = s', s_t = s, a_t = a)$

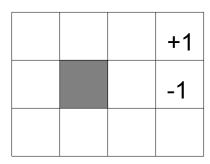




	0.8	
0.1		0.1

Policy

- Deterministic policy $\pi(S):S \to A$ is mapping from states to actions.
- Stochastic policy π(a|s): S,A → [0,1]
 is a distribution over actions given
 states.
- Optimal policy π*(s) is a policy that is better or equal than any other policy (in terms of cumulative rewards)
 - There always exists a deterministic optimal policy for a MDP.

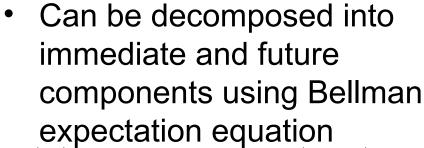


	0.8	
0.1	A	0.1

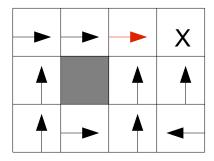
MDP value function

• State-value function of an MDP is expected return starting from state s and following policy π .

$$V_{\pi}(s) = E_{\pi}[G_t|S_t = s]$$



$$\begin{split} V_{\pi}(s) &= E_{\pi}[r_{t} + \gamma V_{\pi}(s_{t+1}) | s_{t} = s] \\ V_{\pi}(s) &= \sum_{s'} T(s, \pi(s), s') r(s, \pi(s), s') \\ &+ \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s') \end{split}$$



Action-value function

 Action-value function Q is expected return starting from state s, taking action a, and then following policy π.

$$Q_{\pi}(s,a) = E_{\pi}[G_t|s_t = s, a_t = a]$$

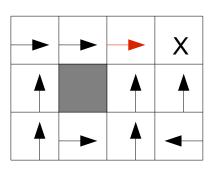


Using Bellman expectation equation

$$Q_{\pi}(s, a) = E_{\pi}[r_{t} + \gamma Q_{\pi}(s_{t+1}, a_{t+1}|s_{t} = s, a_{t} = a)]$$

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') r(s, a, s')$$

$$+ \gamma \sum_{s'} T(s, a, s') Q_{\pi}(s', \pi(s'))$$



Optimal value function

Optimal state-value function is maximum value function over all policies.

$$V^*(s) = max_{\pi} V_{\pi}(s)$$

 Optimal action-value function is maximum action-value function over all policies.

$$Q^*(s,a) = max_{\pi}Q_{\pi}(s,a)$$

 All optimal policies achieve optimal state- and action-value functions.

Optimal policy vs optimal value function

Optimal policy for optimal action-value function

$$\pi^*(s) = arg max_a Q^*(s, a)$$

Optimal action for optimal state-value function

$$\pi^{*}(s) = arg max_{a} E_{s'}[r(s, a, s') + \gamma V^{*}(s')]$$

$$\pi^{*}(s) = arg max_{a} \sum_{s'} T(s, a, s') \Big| r(s, a, s') + \gamma V^{*}(s') \Big|$$

Value iteration

Do you notice that this is an expectation?

• Starting from $V_0^*(s) = 0 \quad \forall s$ iterate

$$V_{i+1}^*(s) = \max_a \sum_{s'} T(s, a, s') \Big(r(s, a, s') + \gamma V_i^*(s') \Big)$$
 until convergence.

• Value iteration converges to $V^*(s)$.

Iterative policy evaluation

- Problem: Evaluate value of policy π .
- Solution: Iterate Bellman expectation back-ups.
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_{\pi}$
- Using synchronous back-ups:
 - For all states s
 - Update $V_{k+1}(s)$ from $V_k(s')$
 - Repeat

$$V_{k+1}(s) = \sum_{s'} T(s, \pi(s), s') (r(s, \pi(s), s') + \gamma V_k(s'))$$

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \cdot \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma V_{k}(s') \right]$$

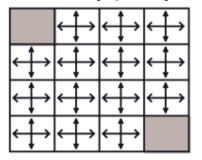
Note: Starting point can be random policy.

From slide 11.

V

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Greedy policy



	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

1	1
v	
n	1

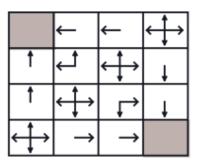
k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

r=-1 for all actions

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0



Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating V_{π}
 - Forming a new policy by acting greedily with respect to V_{π}
- This always improves the policy.
- Iterating multiple times called policy iteration.
 - Converges to optimal policy.

Computational limits – Value iteration

- Complexity O(|A||S|²) per iteration.
- Effective up to medium size problems (millions of states).
- Complexity when applied to action-value function O(|A|²|S|²) per iteration.

Summary

- Markov decision processes represent environments with uncertain dynamics.
- Deterministic optimal policies can be found using statevalue or action-value functions.
- Dynamic programming is used in value iteration and policy iteration algorithms.

Next week: From MDPs to RL

- Readings
 - SB Ch. 5-5.4, 5.6, 6-6.5