TENTATIVE LECTURE SCHEDULE

		Date	Торіс
1.	Mon	13.09.	Course Introduction & Short Review of the Elements
2.	Wed	15.09.	Periodic Properties & Periodic Table & Main Group Elements (starts)
3.	Fri	17.09.	Short Survey of the Chemistry of Main Group Elements (continues)
4.	Mon	20.09.	Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
5.	Wed	22.09.	Transition Metals: General Aspects & Pigments
6.	Mon	27.09.	Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
7.	Wed	29.09.	Redox Chemistry
8.	Mon	04.10.	Crystal Field Theory
9.	Wed	06.10.	V, Nb, Ta & Metal Complexes & MOFs
10.	Fri	08.10.	Cr, Mo, W & 2D materials
11.	Mon	11.10.	Mn, Fe, Co, Ni, Cu & Magnetism & Superconductivity
12.	Wed	13.10.	EXTRA
13.	Fri	15.10.	Resources of Elements & Rare/Critical Elements & Element Substitutions
14.	Mon	18.10.	Lanthanoids + Actinoids & Luminescence (Down/Upconversion)
15.	Wed	20.10.	Inorganic Materials Chemistry Research

EXAM: Thu Oct. 28, 2021

PRESENTATION TOPICS/SCHEDULE

- Wed 06.10. Nb:
- Fri 08.10. Mo: Ahmed, Shamshad, Svinhufvud
- Mon 11.10. Mn: Majaniemi, Thakur, Ahkiola
 - Ru: Ichanson, Locqueville
- Wed 13.10. Co: Ekholm, Olander, Syväniemi
 - Cu: Kolawole, Nguyen, Munib
- Fri 15.10. In: Kovanen, Ogunyemi
 - Te: Huhtakangas, Wallin, Kaarne
- Mon 18.10. Eu: Sonphasit, Tuisku
 - Nd: Jussila, Siuro, Perttu
 - U: Sinkkonen, Wennberg, Partanen

QUESTIONS: Lecture 5

Give plausible explanations for the following melting point (°C) comparisons:

Cu 1083 & Zn 420

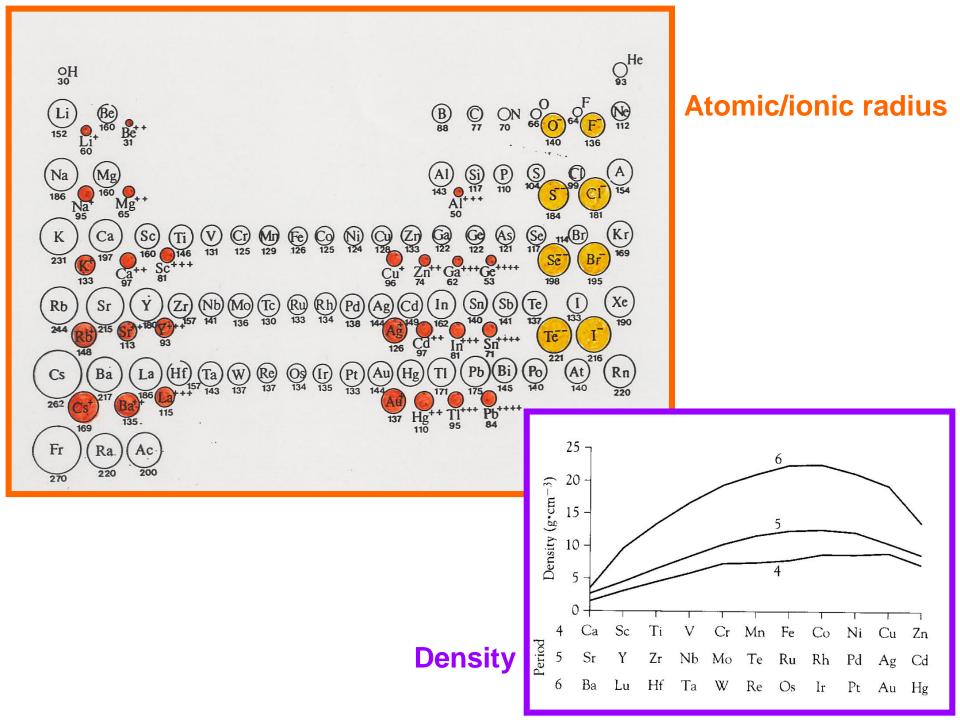
Cr 1860 & Mn 1245 & Fe 1535

Fe 1535 & Ru 2282 & Os 3045

- Select among the following ions those which you assume would be colorless or very weakly colored: Ti⁴⁺, Ti³⁺, Mn⁴⁺, Mn³⁺, Mn²⁺, Fe³⁺, Fe²⁺, Co²⁺, Cu²⁺, Cu⁺. Most importantly, motivate your answer with short explanations.
- Why pigments may appear different under sunlight and under fluorescent lighting?

d-BLOCK ELEMENTS

GENERAL FEATURES


- All are metals
- Relatively small in size (d electrons shield poorly each other)
- Multiple oxidation states \rightarrow richness of chemistry
- Reactivity varies
- More electronegative than alkali and alkaline earth metals
- Both ionic and covalent compounds
- General rule: at lower oxidation states more ionic bond nature (behaves more like a metal)

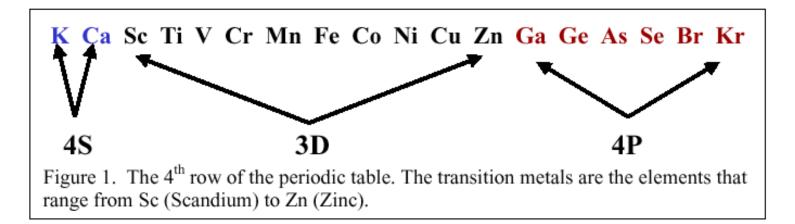
6/15/2015

 General rule: positive metal ions at low oxidation state, oxoanions at high oxidation states (e.g. Mn²⁺ and MnO₄⁻)

Rank the hydride ion, helium atom and
lithium ion in terms of size
Fundate the second stress stress

	Nuclear charge	Number of electrons	lonic radii (A)	
H⁻	1	2	2.08	
Не	2	2	0.93	
Li+	3	2	0.60	•

Ionic radii for 3d cations (CN = 6) in Å:


- with increasing oxidation state ionic radius decreases

Ox. state	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
+11	0.86	0.79	0.80	0.83	0.78	0.75	0.69	0.73	0.74
+111	0.67	0.64	0.62	0.65	0.65	0.61	0.60	0.54	-
+IV	0.61	0.58	0.55	0.53	0.59	0.53	0.48	-	-

OXIDATION STATES

Element	Symbol	Electronic Configuration
Scandium	Sc	[Ar]3d ¹ 4s ²
Titanium	Ti	[Ar]3d ² 4s ²
Vanadium	V	[Ar]3d ³ 4s ²
Chromium	Cr	[Ar]3d ⁵ 4s ¹
Manganese	Mn	[Ar]3d ⁵ 4s ²
Iron	Fe	[Ar]3d ⁶ 4s ²
Cobalt	Co	[Ar]3d ⁷ 4s ²
Nickel	Ni	[Ar]3d ⁸ 4s ²
Copper	Cu	[Ar]3d ¹⁰ 4s ¹
Zinc	Zn	[Ar]3d ¹⁰ 4s ²

Element							
Sc		+3					
Ti	- +2	2 +3	+4				
V	+2	2 +3	+4	+5			
Cr	+2	2 +3	+4	+5	+6		
Mn	- +2	2 +3	+4	+5	+6	+7	
Fe	+2	2 +3	+4	+5	+6		
Co	- +2	2 +3	+4	+5			
Ni	+2	2 +3	+4				
Cu	+1 +2	2 +3					
Zn	+2	2					

	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	(Zn)
+VI I I										
+VI I					•					
+VI				•	0	0				
+V			•		•					
+ I V		•	0		0			0		
+	•	•	•	•	0	•	•			
+		0	0	0	•	•	•	•	•	•
+									•	
	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	(Cd)
+VI I I						0				
+VI I					•					
+VI				•	0	0				
+V			•	0						
+ I V		•	0	0	0	•	0	0		
+	•	0	0	0	0	0	•		0	
+			0	0		0	0	•		•
+						0	0		•	
	La	Hf	Та	W	Re	Os	١r	Pt	Au	(Hg)
+VI I I						•				
+VI I					•					
+VI				•	0	•				
+V			•	0	0					
+ I V		•	0	0	0	0	•	•		
+	•		0	0	0		•		•	
+			0	0				•		•
+	1								0	•

 $ns^2(n-1)d^x$

: most stable : possible

MELTING POINTS (°C)

Ti	1668	Zr	1852	Hf	2220
V	1890	Nb	1470	Та	3000
Cr	1860	Мо	2620	W	3410
Mn	1245	Тс	2140	Re	3180
Fe	1535	Ru	2282	Os	3045
Со	1492	Rh	1960	lr	2443
Ni	1452	Pd	1552	Pt	1769
Cu	1083	Ag	961	Au	1063

- compare to Zn 420, Cd 321, Hg -38
- compare to alkali metals 179 \rightarrow 29, alkaline earth metals 1080 \rightarrow 725
- many valence electrons
 - \rightarrow many electrons per atom in the metal bond
 - \rightarrow good electrical conductors
 - $\rightarrow\,$ strong bonds
 - \rightarrow high melting points
 - \rightarrow hard

MIXED-VALENCY → electrical conductivity

CLASSIFICATION OF MIXED-VALENCE COMPOUNDS

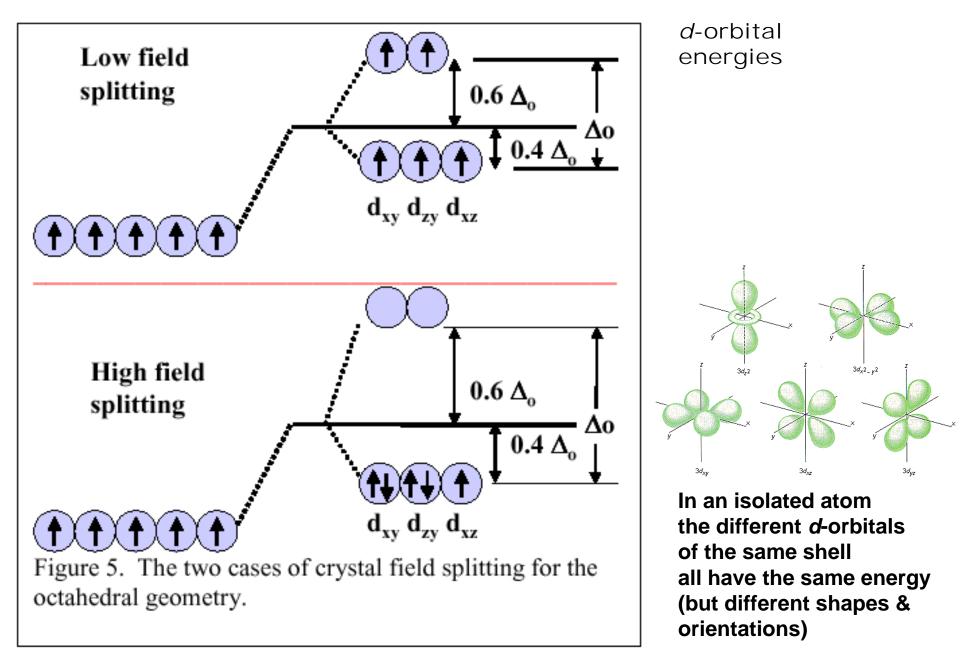
M.B. Robin & P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).

Class-I

- e.g. Na₂S₂O₃ (S^{-II} & S^{VI})
- clearly different environments for the two different atoms
- large energy required for electron transfer between these atoms

2Na⁺

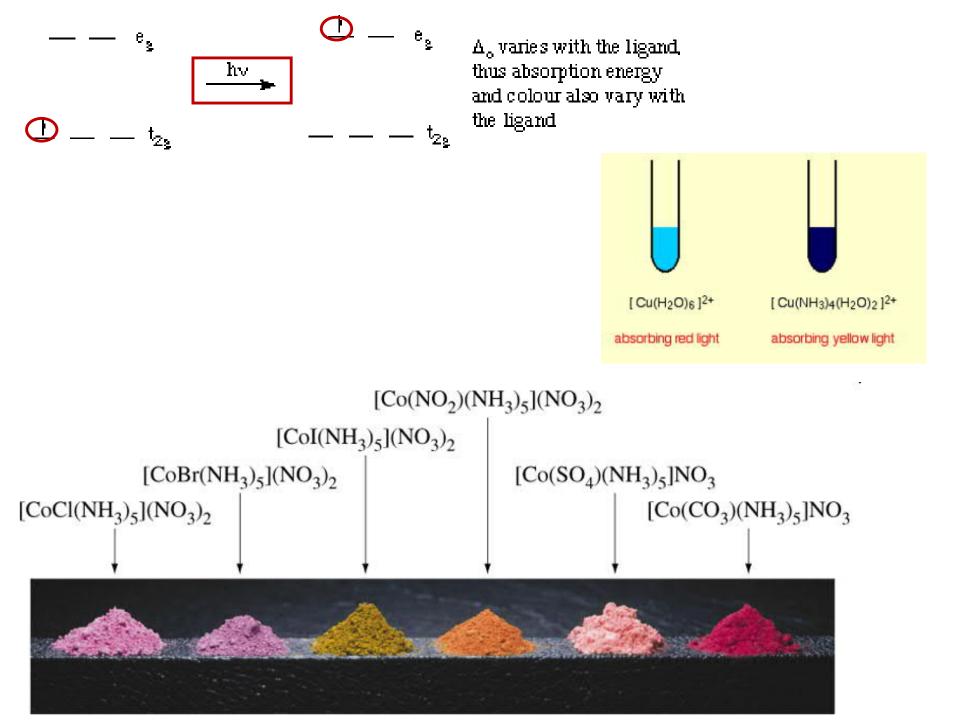
 \rightarrow no interaction \rightarrow no special properties


Class-II

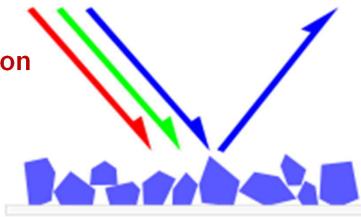
- e.g. Ag₂O₂ (Ag¹ & Ag¹¹¹)
- different but sufficiently similar environments → only a small energy required for electron transfer between the different atoms → semiconducting

Class-III

- e.g. Ag₂F (Ag^{0.5}) & YBa₂Cu₃O₇ (Cu^{2.3})
- all mixed-valence atoms have identical environments
 → electrons delocalized → metallic conductivity


Crystal (or ligand) field **SPLITTING of d** (or f) **ORBITAL** energies

COLOURS


- partly filled *d*-orbitals
- electrons can transfer from one *d*-orbital to another
- energy needed for the transfer is small
- corresponds to visible light wavelengths
- ions absorb certain wavelengths within the visible light spectrum
- if ion absorbs certain colour (e.g. red) the reflected light contains relatively more of the other colours (blue and green), and the ion looks coloured (bluish green)
- ions with empty or full orbitals (d⁰ ja d¹⁰) are color-uless
 - ions with half-filled orbitals (d⁵) are colour-less or faintly coloured

PIGMENT

- Material with wavelength-selective absorption
- Practically usable pigment:
 - high tinting strength
 - stable in light and heat
 - Particulate and insoluble in the binder (pigment versus dye)
 - insoluble in water
 - nonpoisonous, etc.
- Application fields: paints, inks, plastics, fabrics, cosmetics, food, etc.
- Natural pigments (carbon black, iron-oxide based ochres, etc.) have been used as colorants since prehistoric times
- April 2018 by *Bloomberg Businessweek*:
 - global value of pigment industry \$30 billion
 - TiO₂ (white) has the largest share

Different absorption processes

- Conjugated organics molecules: double bonds absorb light
- Inorganic pigments: different electron transfer processes
- Note: pigments are different from luminescent materials (discussed later on in this course)
- Note: the spectrum of the incident light affects the appearance of the pigment, as different wavelength ranges are left to be reflected or scattered

Inorganic BLUE PIGMENTS

- 6 000 years ago, Ultramarine: "true blue" made from semiprecious gemstone lapis lazuli mined in e.g. Afghanistan
- 1826 French Ultramarine: synthetic ultramarine
- 4 000 years ago, Egyptian Blue: "turquoise", first synthetic pigment (calcium copper tetrasilicate) made by heating sand and copper together
- 1704 Prussian Blue: Fe₄[Fe(CN)₆]₃ (other names: e.g. Berlin, Turnbull, midnight blue)
- 1802 Cobalt Blue: CoAl₂O₄ (poisonous)
- 2009 Mas Blue: Y(In,Mn)O₃

- Prof. Mas Subramanian received 2008
 National Science Foundation grant to explore
 novel materials for electronics applications
- Main aim: multiferroic (FM + FE) materials
- He directed his PhD student Andrew Smith to synthesize a mixture of two oxides: YInO₃ (ferroelectric; white) YMnO₃ (antiferromagnetic; black)
- The result was NOT multiferroics, but blue material
- Subramanian has experience in chemical industry (DuPont) and recognized the value of the new blue pigment (filed a patent)
- Color adjusted by In/Mn ratio: Y(In_{0.8}Mn_{0.2})O₃ strongest
- First blue pigment discovered since 1802 (cobalt blue)
- Huge interest:
 - industry: Nike, Crayola, etc.
 - media: New York Times, Time Magazine, National Geographic, Businessweek, etc.
 - arts: Harward Art Museum, etc.

Mas Subramanian

- Born: 1954, Chennai, India
- MSc. I1977 (Inorganic Chemistry: clays and minerals) University of Madras 1977
- PhD 1982 (Solid State Chemistry: pyrochlore oxides) Indian Institute of Technology, Madras
- 1982-1984 PostDoc, Texas A&M University, USA
- 1984-2006 DuPont, USA:
 - ceramics, superconductors, dielectrics, catalysis, thermoelectrics, multiferroics, ionic conductors, etc.
- 2006-now Professor at Oregon State University: design and synthesis of novel functional materials for emerging applications in energy, environment & electronics
- 2009: novel durable blue pigment: YInMn Blue

Mount Hood (Oregon) by Aquarelles de Mas Blue by Ms. Rajeevi Subramanian

Linus Carl Pauling (1901–1994) was an American chemist, biochemist, peace activist, author, and educator, graduated at Oregon State University. He published more than 1200 papers and books, 850 on scientific topics. *New Scientist* rated him in 2000 the 16th most important scientist in history.

Pauling was one of the founders of the fields of quantum chemistry and molecular biology.

For his scientific work, Pauling was awarded the Nobel Prize in Chemistry in 1954.

In 1962, for his peace activism, he was awarded the Nobel Peace Prize.

Pauling is one of only two people who have received Nobel Prizes in different fields, the other being Marie Curie.