Differential and Integral Calculus 1
MS-A0111
Hakula
Ardiyansyah
Problem Sheet for Week 38 (B), 2021

NOTE ${ }^{1}$
The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labelling the "papers" can be found on the course pages.

1 Introductory Problems

Intro 5 Classify the critical points of the function $y=x \ln x$.
Intro 6 Find the equation of the straight line of maximum slope tangent to the curve $y=1+2 x-x^{3}$.

2 Homework Problems

Exercise 5 Let f and g be twice differentiable functions for which the identity

$$
a f(x) g(x)+b f(x)+c g(x)+d \equiv 0
$$

where a, b, c, and d are constants, holds. Let further f, f^{\prime}, and the constants a and c be positive. Show, that under certain condition

$$
\mathrm{D} \ln \frac{f^{\prime}(x)}{g^{\prime}(x)}=k \sqrt{f^{\prime}(x) g^{\prime}(x)},
$$

where k is constant. What is the condition, and the value of k ?
ExERCISE 6 One of the corners of a given rectangle is the point P on the curve

$$
(a x)^{2 / 3}+y^{2 / 3}=b^{2 / 3}
$$

[^0]and the other three are the symmetric points of P about the coordinates axes and the origin. Find the extremal values of the area of the rectangle when P moves along the curve.

[^0]: ${ }^{1}$ Published on 2021-09-08 08:52:08+03:00.

