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Who am [?

« Senior Data Scientist at Futurice Oy

- Mostly working on end-to-end machine learning solutions for clients in construction,
healthcare, public sector etc.
Previously:

« Co-founded a computer vision startup
+ Doctor of Science from Aalto University, Computer Science department



What do we need to do to create a useful ML model?

Find a problem
worth solving

Create a dataset

Train a model

Get predictions
on new data




How can we deliver a useful model continuously?
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What do we need to do to get the model to the end users?

Configuration

Data Collection

Machine
Resource
Management

Feature
Extraction

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring




How can Machine Learning software integrate with the
rest?

Software Development

Robust and long-existing quality
practices

Predictable work output

Agile workflow across multiple
disciplines

Toolchains

Deterministic output

Data Science

Experiment driven

Multiple experiments at the same time
No guarantee of success

Only recently got out the ivory tower
Evolving and often overlapping
toolchains

Evolving quality practices

Probabilistic output
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MLOps tries to bridge the gap between
experimentation oriented Data Science workflows
and the robust practices of Software Development

& Continuous Deployment



MLOps Principles

-+ Automation - source control, feature store, model registry, test&build&deploy services
» Continuous Everything (Integration/Delivery/Training/Monitoring)
- Versioning - datasets/scripts/models for rollback/reproducibility/governance
Experiment Tracking - running multiple experiments requires tracking of all relevant metadata
- Testing - data/features/model development/ML infrastructure
- Monitoring - dependency changes in data schema/input & prediction distributions/staleness
- Reproducibility - data collection/feature engineering/model training/deployment
Modularity - generally weaker boundaries between components so good structure is
important



MLOps - How do we do it?
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OK, how about the tools?

* Currently there is an explosion of
tools and stack to support MLOps

- All the big cloud players have their
own (opinionated) tech stack to do
MLOps

- There is a lot of open-source tools, of
varying quality.

« There are a lot of small and big
players that take care of parts or
almost end-to-end MLOps

MLOps Stack
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Are there really that many options? Oh, yes ..
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https://landscape.lfai.foundation/

How do the tools support the process?

MLOPS STACK
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Example MLOps architecture on Azure
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Example MLOps architecture on GCP

'-) Google Cloud Platform

Datz sources

Data warehouse
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Feature store
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Wait, why should | personally care about MLOps at all?

* As a Data Scientist:
- you want your work to scale and continue to deliver value. A model starts
losing its value as soon as you finish training it.
your work process (and you) needs to integrate with the rest of the software
development happening in the organization. No more ivory towers.
- As a Software Engineer:
 There is a huge unmet need to bring good software practices (DevOps) to the
organization that builds ML solutions. Full-stack JS is cool, but delivering
models at a scale is cooler.
+ For all: there is money, fame and careers to be made, if you understand MLOps :)
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Demo time!
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What is Futurice?

Probably the best Nordic innovation consultancy, that actually builds cool stuff.
We deliver solutions for our customers that blend design, technology and data.
And we are hiring! Finland, Germany, Sweden - including fully remote positions!
Check it out -> https://futurice.com/careers/open-positions
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Thank you!
Kiitos!
Dankel
Tack!

BERLIN « HELSINKI + LONDON *« MUNICH + STOCKHOLM + STUTTGART « TAMPERE

Vilen Looga
Senior Data Scientist

vilen.looga@futurice.com

Or find me on LinkedIn!
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futurice

Co-creating a resilient future



