
Programming 2:
Basics of programming with Arduino

Wearable technology and functional wear
Antti Salovaara

1

What you’ll learn today

More interactiveness to Arduino project
Using more variables and if-else blocks

How to write good code
Writing own functions to modularize the code
Commenting
Avoiding “hard coding”
Useful conventions

2

Repetition:
How far did we reach last time?

3

Alternating blinking

4

Pin 12
GND

(ground)

Pin 11

Two output pins!

Light the LED when button is down

Pin 2

GND
(ground)

Button

LED

Pin 13

button-detector.ino

Photograph of this
setup is in the next
slide

6

New stuff:
A button that keeps the light on after a press

7

Button project 2:

“Toggle” the LED on/off
on each button press

8

button state:

LED state: Light on

press press

Toggle the LED on/off on every button press

Same wiring as in the previous button project
But more programming: See the next pages

9

Pin 2

GND
(ground)

Button
detection

LED control

Pin 13

A simple plan for loop()’s logic

(…that does not work yet – wait for next page)

10

Is
button state

on or off?

It is off

Read button state

Is the
LED state
on or off?

It is on

It is off

Turn LED on

It is on

Turn LED off

The problem with the simple logic

Root of the problem:
loop() runs hundreds of times every second, but a finger’s press lasts several runs
of that loop.
Time 1: Button is pressed and LED is off. Therefore we switch the LED on.
Time 2: Button is still pressed and now LED is on. Therefore we switch the LED off.

What happens:
If we change the LED state every time when we notice that button is down, we
change the LED on/off on every run of the loop()
Result: we have a very quickly blinking LED and it looks like it’s on all the time

11

button state:
LED state:

loop()

1 2time:

How the problem can be solved

Solution:
We want to know if user is already pressing the button.
Then at Time 2 we know that we don’t do anything.

12

Non-working
solution acted

like this:

Button state:
LED state:

1 2time:

Button state:

User is already pressing:

LED state:

yes

pressed

no

1 2time:

In this new
variable, we

remember if the
user alread

presses the button

We change LED
only if button is
pressed and user
is not already
pressing the button

The working solution

Is
button state

pressed?It is not
pressed

Read button state

Is the
LED state
on or off?

It is off

Turn LED on

It is on

Turn LED off

Was user
already

pressing the
button?

yes
no

It is pressed

Remember that
user is not pressing

Remember that now
user is pressing

Button state:

User is already pressing:

LED state:

yes no

pressed pressed

no

We change the LED
on/off only 1) when
button is pressed and 2)
user was not already
pressing it.

Let’s program the toggling button

Create a new empty project in Arduino for this

button-toggler.ino

Is
button
state

pressed?It is not
pressed

Read button state

Is the
LED

state on
or off?

It is off

Turn LED on

It is on

Turn LED off

Was user
already

pressing
the

button?

yes

no

It is
pressed

Remember that
user is not pressing

Remember
that now
user is

pressing

loop()

button-toggler.ino

Let’s now try this out,
then examine the code
in more depth

setup()
“bool” means that these variables’
only values can be “true” and
“false”

All in one screen

global
variables

global variables can
be read and changed
everywhere in your

program code
local
variable

Use global variables only
if you have to. Their bugs
are difficult to track down.

local
variables are
available only
within their
own { }-block

which in this
case is the
loop()
function’s
block

19

It is very good
idea to write

comments that
explain your
code’s logic

- Helps you
remember your

logic after a
break

- Clarifies your
thinking

This code has many if-else
blocks that add intelligence to
the program:
if (test is true) {

commands
} else {

commands
}

Blocks can
”nest” inside

each other

How to write good code

Writing your own functions that modularize the code
Using commenting
Avoiding “hard coding”
Useful conventions

20

Writing your own
functions that
modularize the code

modularizing =
making the same code
reusable from many places +
making your code more
understandable

Example:
This part takes many lines
but does one elementary
thing: it toggles the LED on
and off.
This part would be more
readable if we just wrote:

toggle(13);

21

22

toggle(13);

Writing your own
functions that
modularize the code

The code is now cleaner and
easier to understand.

But how do we create this
function so that we can use
it this way?

toggle()

23

We announce in the
program’s beginning that

we have our own function
called toggle()

We write the function
that we announced

anywhere in the code,
such as to the end.

In this case, we cut the
code from loop() and

pasted it here.

Here is our code for
setup() and loop()

// our setup() code
// (not copied here – see earlier slides)

// our loop() code
// (was shown in the previous slide)

How to write good code

Writing own functions to modularize the code
Commenting
Avoiding “hard coding”
Useful conventions

24

Commenting

Can be used for two purposes:
To explain what the code does:

When you test different effects, you can use comments to turn off
and on some parts of code:

There are two ways to make comments:
// Changes rest of the line into a comment
/* and */ change everything between these
marks into a comment

25

How to write good code

Writing own functions to modularize the code
Commenting
Avoiding “hard coding”
Useful conventions

26

Avoiding “hard coding”

Consider this scenario:
You have a complicated set of jump
wires in your Arduino and breadboard
You decide that you need to organize
your wiring to make it more easily
understandable
You connect some wires to different
pins in Arduino (such as, you move a
wire from pin 2 to pin 8)

=> Problem emerges: You need to
make lots of changes to your
program code too

Such as, where your code says pin 2,
you have to change it to pin 8
If you fail to make at least one of those
changes, you have a bug in your code

27

Avoiding “hard coding”

Consider this scenario:
You have a complicated set of jump
wires in your Arduino and breadboard
You decide that you need to organize
your wiring to make it more easily
understandable
You connect some wires to different
pins in Arduino (such as, you move a
wire from pin 2 to pin 8)

=> Problem emerges: You need to
make lots of changes to your
program code too

Such as, where your code says pin 2,
you have to change it to pin 8
If you fail to make at least one of those
changes, you have a bug in your code

28

Avoiding “hard coding”…

Our LED toggler project has this
problem:

If you decide to rewire LED toggler’s
wiring, you need to make lots of
updates to your code
Although your goal has been that
rewiring makes your project more
understandable, your program may
stop working correctly

This problem results from “hard
coding”

= writing hard-to-change details into
the code
Hard coding can be avoided by using
variables

29

How to
remove and
avoid hard
coding

30

When you
rewire your
jumpwires, you
only need to
change these
two lines.

How to write good code

Writing own functions to modularize the code
Commenting
Avoiding “hard coding”
Useful conventions

31

Improving readability for humans

Use indents to visualize nested blocks:

32

Indents used J Indents not used L

vs

Improving readability for humans

Use “camel case” in variable and
function names:

thisIsCamelCase
Alternative is “snake case”:

this_is_snake_case
Use small letters in the variable
and function names’ beginnings

NotLikeThis
Reason: the convention is that
names starting with Big Letters
are class names in object-
oriented programming

Write your programs in English
Write comments in English
Use English variable and function
names

Use variable and function names
that describe their purpose

33

good

bad

Exercise: find 8 errors

Pin 2 should be INPUT
and pin 13 should be
OUTPUT

Missing semicolon ;

Extra {

Missing {

Here errors are harder to find because the code is not nicely indented. This
is why correct indenting (i.e., use of tab characters) is important.

find-errors-exercise3.ino

Pin numbers are
hardcoded

What will we have on Monday 4 Oct?

Using a timer instead of a delay()

Reading input from sensors
Pressure input

How to trouble-shoot bugs in our code

35

