Programming 2:

Basics of programming with Arduino

Wearable technology and functional wear
Antti Salovaara

More interactiveness to Arduino project
Using more variables and if-else blocks
How to write good code

Writing own functions to modularize the code
Commenting

Avoiding “hard coding”
Useful conventions

Repetition:
How far did we reach last time?

Alternating inking

i

& 82 B B PO
E & B B ® O
L

GND
(ground)

Two outp-ut pins!

void setup() {
// put your setup code here, to run once:
pinMode(13, OUTPUT);
pinMode(12, OUTPUT);

5

void loop(Q) {
// put your main code here, to run repeatedly:
digitalWrite(13, HIGH);
digitalWrite(12, LOW);
delay(1000);

digitalWrite(13, LOW);
digitalWrite(12, HIGH);
delay(1000);

U e

"R e R

Tl
-2
-3
s 4
.5

10
=11
.12
=13
=14
=15
=16
.17

22
=23

-4

Light the LED when button i% down

22046

25¥

aND
¥3M0d

GND
(ground)

NI 90TVNV

B abecd
s " lea = s = ‘1 il
' R - 2a &« & & ‘)
- Je « & =
.| T ! :’ﬂlll
= e « & =
- - AT -
s 8 8w &« 5 & = “« & & s 3 = g
v . e u« & & = - & = = =9 g
E" MNMe &« &« & = « & « . s ::
o . Ma =« a u = «- "« n nil
5 ; P|n13 e & &« » = - -_o
';oE B o o & « s & sl .
:; 4 «- = . w14
:'o 2 9 15 = = u = — —
=) B " -
(@) ; : - - - .o w7 ::
=2 It 18e &« = & = “- = s = =3 Button
O_ e 19 &« « a = - % = s w9 .
08 « « a « - % % = =20
3 « 218 & & & & 21 - .
P|n2 s 2 u u a - ... s ::
- 2 m u n = - = % % w23 =
- e - -

24 -

void setupQ {
pinMode(2,INPUT);
pinMode(13,0UTPUT);

digitalWrite(13,L0W);

}

void loopQ [{

// detect button press from pin 2
// control LED from pin 13

// start by having the LED off

// read the current button state and store the result in a variable:
int buttonState = digitalRead(2);

// do different actions based on what state the button has
if (buttonState == HIGH) {
// HIGH means that the button is pressed => turn on the LED

digitalWrite(13,HIGH);

}

else {

// The other option: the button is not pressed => turn the LED off

digitalWrite(13,L0W);

3
}

24

Photograph of this
setup is in the next
slide

button-detector.ino

\.

rEEEBE B ED
rEEEEEEEE

ONINaQYY

o EEEEEENR
o BN N NN NN WM

EE——

-

@-lllilluaﬂ~

New stuff:
A button that keeps the light on after a press

press press

S S

Light on
Q000000000 000000

Toggle the LED on/off on every button press

Same wiring as in the previous button project
But more programming: See the next pages

LED control

Button

GND detection

(ground)

(...that does not work yet — wait for next page)

» Read

It is off

It is on

Is the

It is off It is on

1

Turn LED on Turn LED off

on or off?

gEgEgEgEgEgEp

12
R R

time:

Root of the problem:

loop() runs hundreds of times every second, but a finger’s press lasts several runs
of that loop.

Time 1: Button is pressed and LED is off. Therefore we switch the LED on.
Time 2: Button is still pressed and now LED is on. Therefore we switch the LED off.

What happens:

If we change the LED state every time when we notice that button is down, we
change the LED on/off on every run of the loop()

Result: we have a very quickly blinking LED and it looks like it's on all the time ﬂ

Non-working | 1
solution acted Mo
like this: time: 19
Solution:

We want to know if user is already pressing the button.
Then at Time 2 we know that we don’t do anything.

In this new U We change LED
variable, we |__pressed only if button is
remember if the —] ves pressed and user
user alread is not already
presses the button pressing the button

time: 12

U U We change the LED

—] pressed | | pressed on/off only 1) when
button is pressed and 2)
_no | yes |__no | user was not already
pressing it.
» Read
Remember that
Is It is pressed
It is not pressed?
pressed
Remember that now _ yes
no
It is off Is the It is on
l on or off?
Turn LED on Turn LED off

Create a new empty project in Arduino for this

void loop() {

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

if (buttonState == LOW) {
// if user 1is not pressing the button now,
// tell that for later loops:
userAlreadyPressesButton = false;

}

else {

if (userAlreadyPressesButton == false) {
// This is the situation where the user
// has just now pressed down the button,
// and was not doing it earlier.

// tell to later loops that user is now
// pressing the button:
userAlreadyPressesButton = true;

// Toggling:

// if LED was not on, turn it on;

// if LED was on, turn it off:

if (ledIsOn == false) {
digitalWrite(13,HIGH);
ledIsOn = true;

} else {
digitalWrite(13,L0W);
ledIsOn = false;

}

3

else {
// do nothing because this just means that
(:) // user has not lifted the finger from the
// button yet.
}
}
}

» Read button state

Remember that
user is not pressing

It is as user

Is
button pressed alreagly
state pressing
It is not " the
pressed pressed: button?
Remember C
that now
user is
pressing
It is off Is the Itis on
LED

state on
or off?

Turn LED on Turn LED off

button-toggler.ino

“bool” means that these variables

bool ledIsOn; only values can be “true” and
bool userAlreadyPressesButton; “false”

void setup() {

// we'll detect button press from pin 2:

pinMode(2Z, INPUT); Let's now try this out,
then examine the code

// we'll control LED from pin 13: .
in more depth

pinMode(13,0UTPUT);

// we start by having LED off:
digitalWrite(13,L0W);

// we remember this LED state in our variable
ledIsOn = false;

// we start from state where user is

// not pressing the button:
userAlreadyPressesButton = false;

button-toggler.ino

void loop(Q) {

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

if (buttonState == LOW) {
// if user is not pressing the button now,
// tell that for later loops:
userAlreadyPressesButton = false;

bool ledIsOn; ilse {
bool userAlreadyPressesButton;
; if (userAlreadyPressesButton == false) {
vo;? SGFT$(3 E & BuE £ e B // This is the situation where the user
f aed 2 iNEST .u Sl (PIRES0E SN RS s // has just now pressed down the button,
pinMode(2, s // and was not doing it earlier.
/(aedlllgogE;SbTLFD Ko, pithi 155 // tell to later loops that user is now
pinMode(13,) // pressing the button:
AlreadyP Button = true;
// we start by having LED off: HEErALneacFhessastaton e
digitalWrite(13,L0W); // Toggling:
// if LED was not on, turn it on;
// we remember this LED state in our variable /) 1F LED xgs B S ?t o?f‘
LedIsOn = false; if (ledIsOn == false) {
digitalWrite(13,HIGH);
// we start from state where user is legISOn _ tr5e°)
// not pressing the button: Y else { ’
userAlreadyPressesButton = false; digitalWrite(13,LOW);
¥ ledIsOn = false;
}
}
else {
// do nothing because this just means that
// user has not lifted the finger from the
// button yet.
3
}

global
variables

global variables can
be read and changed
everywhere in your
program code

bool Led)sOn
bool userAl yPr‘esse Button;

void setup() {
// we'll detect bdtton/press from piR X:
pinMode(2,INPUTY;

// we'll contfol LED /from pin 13:
pinMode(13,QUTPUT);

// we stgft by havihg LED off:
digitalWite(13,LO0N);

// we/remember this LED state in our variable
led = false;

// we start frop state where user is
// not pressing the button:
userAlreadyP sButton = false;

Use global variables only
if you have to. Their bugs
are difficult to track down.

void loop(Q) {

// detect i

user is now pressing the button:
int button @

e<_digitalRead(2);

if (but = LOW) {
// if user is not pressing

tell that—for later loops:
userAlreadyRressesButton = false;
}
else {

if (userAlreadyPressesButton == false) {
// This is the situation where the user
// has just now pressed down the button,
// and was not doing it earlier.

// tell to later loops that user is now
// pressing the button:

userAlreadyPressesButton = true;
//\Joggling:
// X LED was not on, turn it on;

if\LED was on, turn it off:
i\ (1edIsOn == false) {
digitalWrite(13,HIGH);
1&dIgOn = true;
Nelse {
digitalWrite(13,LOW);
1€dIsOn = false;
}
3
else {
// do nothing because this just means that
// user has not lifted the finger from the
// button yet.

—_ local
variable

local
variables are
available only
within their
own { }-block

which in this
case is the

loop()
function’s

block

}

void loop() {

G

<:b (userAlreadyPressesButton == false) {
1s-is the situation where the user
@s just\now pressed down the button,

It is very good
idea to write
comments that
explain your
code’s logic

- Helps you
remember your
logic after a
break

- Clarifies your
thinking

®®

}

§F XbuttonState — LoW) {

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

// if user is not pressing the button now,

// tell that for later loops:
userAlreadyPressesButton = false;

// Th
L

bt doing it earlier.

pressing the button:
serAlreadyPressesButton = true;

// Toggling:
// if LED was not on, turn it on;
// if LED was on, turn it off:
if (ledIsOn == false) {
digitalWrite(13,HIGH);
ledIsOn = true;
} else {
digitalWrite(13,L0W);
ledIsOn = false;
3

o/ {

ater loops that user is now

This code has many if-else
blocks that add intelligence to
the program:
if (test is true) {

commands

} else {
commands
}

// do nothing because this just means that
// user has not lifted the finger from the

// button yet.

Blocks can
"nest’ inside
each other

How to write good code

Writing your own functions that modularize the code (::I

Using commenting
Avoiding “hard coding”
Useful conventions

20

void loop() {

Writing your own
functions that
modularize the code

modularizing =

making the same code
reusable from many places +
making your code more
understandable

Example:

This part takes many lines
but does one elementary
thing: it toggles the LED on
and off.

This part would be more
readable if we just wrote:

toggle(13);

}

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

if (buttonState == LOW) {
// if user is not pressing the button now,
// tell that for later loops:
userAlreadyPressesButton = false;

}
else {

if (userAlreadyPressesButton == false) {
// This is the situation where the user
// has just now pressed down the button,
// and was not doing it earlier.

// tell to later loops that user is now
// pressing the button:
userAlreadyPressesButton = true;

7/ if LED was not on, tyrn it on;

// if LED was on, turn it\ off:

if (ledIsOn == false) {
digitalWrite(13,HIGH);
ledIsOn = true;

} else {

digitalWrite(13,L0W);

ledIsOn = false;

}
3
else {

// do nothing because this just means that

// user has not lifted the finger from the
// button yet.

}

}

void loop(Q) {

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

if (buttonState == LOW) {
// if user is not pressing the button now,
// tell that for later loops:
userAlreadyPressesButton = false;

}
else {

if (userAlreadyPressesButton == false) {
// This is the situation where the user
// has just now pressed down the button,
// and was not doing it earlier.

// tell to later loops that user is now
// pressing the button:
userAlreadyPressesButton = true;

The code is now cleaner and // Toggling:
. // if LED was not on, turn it on;
easier to understand. — /7 if LED was on, turn it off:
> toggle(13);
But how do we create this else {

: // do nothing because this just means that
functlon so that we can use // user has not lifted the finger from the
it this Way'? // button yet.

}
3

}

‘bool ledIsOn;
bool userAlreadyPressesButton;
void toggle(int pin);
We announce in the
program’s beginning that
we have our own function
called toggle()

// our setup() code
// (not copied here - see earlier slides)

Here is our code for
setup() and loop() // our loop() code

// (was shown in the previous slide)

We write the function ~— void toggleCint pin) {
that we announced if (ledIsOn == false) {
. digitalWrite(pin,HIGH);
anywhere in the code, Led TS0 wi dinne:
such as to the end. < } else {
In this case, we cut the digitalWrite(pin,LOW);

ledIsOn = false;
code from loop() and T

pasted it here. _ }

How to write good code

Writing own functions to modularize the code

Commenting <
Avoiding “hard coding”
Useful conventions

24

Can be used for two purposes:
To explain what the code does:

// detect if user is now pressing the button:
int buttonState = digitalRead(2);

When you test different effects, you can use comments to turn off
and on some parts of code:

digitalWrite(13,L0W);
ledIsOn = 0;

// digitalWrite(13,HIGH);
// ledIsOn = 1;

/*
i1f (ledIsOn == false) {
There are two ways to make comments: digitalWrite(pin,HIGH);
/I Changes rest of the line into a comment S
/* and */ change everything between these L Gl

. ledIsOn = false;
marks into a comment

¥
74

How to write good code

Writing own functions to modularize the code

Commenting

Avoiding “hard coding” {3
Useful conventions

26

Consider this scenario:

You have a complicated set of jump
wires in your Arduino and breadboard

You decide that you need to organize
your wiring to make it more easily
understandable

You connect some wires to different

pins in Arduino (such as, you move a
wire from pin 2 to pin 8)

=> Problem emerges: You need to
make lots of changes to your
program code too

Such as, where your code says pin 2,
you have to change it to pin 8

If you fail to make at least one of those
changes, you have a bug in your code

bool ledIsOn;
bool userAlreadyPressesButton;

void setu {
pinMod NPUT);
pinMode UTPUT);

digitalWrit LOW);

. . . ledIsOn = false;
COnS|der thls scenario. u:er'il:eadygr'zzsesButton = false;
You have a complicated set of jump !
wires in your Arduino and breadboard void loop() { N
)) int buttonState = d1gltalRead@
You decide that you need to organize ¢ couttonstate — LoD |
I H H 1 utton>tate ==
yogr Wltrlngd toblmake It more eaSIIy userAlreadyPressesButton = false;
understandable }
. . else {
You connect some wires to different if (userAlreadyPressesButton — false) {
pins in Arduino (such as, you move a userdleggglyPressesButton = e
wire from pin 2 to pin 8) togte(13;
— : Lse {
=> Problem emerges: You need to "0/ do nothing
make lots of changes to your ;
program code too }
Such as, where your code says pin 2, VL Soaglsiiie o) {) {
. . L edisun == TalLse
you have to change it to pin 8 VeTiaTH (e in BLED:
If you fail to make at least one of those el
changes, you have a bug in your code digitalWriteCpin, LOW);
ledIsOn = false;
}

}

Our LED toggler project has this
problem:

If you decide to rewire LED toggler’s
wiring, you need to make lots of
updates to your code

Although your goal has been that
rewiring makes your project more
understandable, your program may
stop working correctly

This problem results from “hard
coding”

= writing hard-to-change details into
the code

Hard coding can be avoided by using
variables

bool ledIsOn;
bool userAlreadyPressesButton;

void set

)

upQ {
pinMod NPUT);
pinMode UTPUT);

digitalWrit LOW);
ledIsOn = false;
userAlreadyPressesButton = false;

void loop() {
int buttonState = digitalReadez:)

5

if (buttonState == LOW) {

b

userAlreadyPressesButton = false;

else {

3

if (userAlreadyPressesButton == false) {
userAlreadyPressesButton = true;
toggle(ff);
else {
// do nothing

b

void toggle(int pin) {
if (ledIsOn == false) {

}

}

}

digitalWrite(pin,HIGH);
ledIsOn = true;

else {
digitalWrite(pin,LOW);
ledIsOn = false;

bool 1ledIsOn;
bool userAlreadyPressesButton;

void toggle(int pin);

void setup

digitalWr
ledIsOn = falsE;
userAlreadyPressesButton = false;

}

void loop(Q) {

// detect if user is now pressing the button:
int buttonState = digitalReaq:::;

if (buttonState == LOW) {
userAlreadyPressesButton = false;
}
else {
if (userAlreadyPressesButton == false) {
userAlregdyPressesButton = true;
toggld(ff);
}

else {
// do nothing

}
&

void toggle(int pin) {

if (ledIsOn == false) {
digitalWrite(pin,HIGH);
ledIsOn = true;

} else {
digitalWrite(pin,LOW);
ledIsOn = false;

}

}

bool 1ledIsOn;
bool userAlreadyPressesButton;

int buttonPin = 2] When you

int ledPin = 13;] rewire your

void toggleCint pin); Jjumpwires, you
only need to

void setup() { change these
pinMode(buttonPin, IR PUT); .
pinMode(feaPin,0UTPUT); two lines.
digitalWr‘ite,LOW);
ledIsOn = false;
userAlreadyPressesButton = false;

}

void loop() {

// detect if user is now pressing the button:

int buttonState = digitalRead(buttonPin);

if (buttonState == LOW) {
userAlreadyPressesButton = false;
}
else {
if (userAlreadyPressesButton == false) {
userAlreadyPressesButton = true;
toggle(ledPin);
}
else {
// do nothing
}
}
}

void toggle(int pin) {

if (ledIsOn == false) {
digitalWrite(pin,HIGH);
ledIsOn = true;

} else {
digitalWrite(pin,LOW);
ledIsOn = false;

}

}

How to write good code

Writing own functions to modularize the code

Commenting

Avoiding “hard coding”
Useful Conventions<g:|

31

Use indents to visualize nested blocks:

void loop() {

int buttonState = digitalRead(buttonInputPin); yoig LoopQ) d

int buttonState = digitalRead(buttonInputPin);

if.(buttonState == HIGH) { if (buttonState == HIGH) {
if (userAlreadyPressesButton == 1) { if (userAlreadyPressesButton == 1) {
¥ }
else { else {

userAlreadyPressesButton = 1; userAlreadyPressesButton = 1;

if (ledIsOn == @) { if (ledIsOn == @) {
digitalWrite(ledPin,HIGH); VS digitalWrite(ledPin,HIGH);
ledIsOn = 1; ledIsOn = 1;

} else { } else {
digitalWrite(ledPin,LOW); digitalWrite(ledPin,LOW);
ledIsOn = 0; ledIsOn = 0;

} }

} }
} }
else { else {
userAlreadyPressesButton = 0; userAlreadyPressesButton = 0;
} ¥
} }

Indents used © Indents not used ®

Use “camel case” in variable and Write your programs in English

function names: Write comments in English
thislsCamelCase Use English variable and function
names

Alternative is “snake case’:

this is snake case : .
— = — Use variable and function names

Use small letters in the variable that describe their purpose
and function names’ beginnings

NotLikeThis if (ledIsOn = false) {
_ . digitalWrite(ledPin,HIGH);
Reason: the convention is that ledIsOn = true; d
- - - } else { goo
names starting w!th Blg Letters digitalWriteCledPin, LOW):
are class names in object- ledIsOn = false;
oriented programming }
if (a == false) {
digitalWrite(b,HIGH);
Cc = true; bad
} else {
digitalWrite(b,LOW);
c = false;

}

Here errors are harder to find because the code is not nicely indented. This
is why correct indenting (i.e., use of tab characters) is important.

Pin numbers are
hardcoded Pin 2 should be INPUT

and pin 13 should be
77 fEﬁZ5:;huitmnqmﬂ!ﬂ?1ﬂﬁﬁﬁ7§ﬁ?€?==----_ OUTPUT

pinMode(13, 7/ control LED from pin 13
digitalWrite(I3, HIG@ // start by having LED on
5

void loop() { o
int buttonIsPressed = digitalRead <:>; // read the button state and store the result

if(buttonIsPressed ==
digitalWrite(13,L0

3

else { _

digitalWrite(13,HIGH):

s

H) { // decide what to do. HIGH means that button is pressed
// turn off the LED

Extra {
turn on the LED

Missing semicolon ;
Missing {

find-errors-exercise3.ino

Using a timer instead of a delay()

Reading input from sensors
Pressure input

How to trouble-shoot bugs in our code

